Cargando…
Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles
Protein corona formation is critical for the design of ideal and safe nanoparticles (NPs) for nanomedicine, biosensing, organ targeting, and other applications, but methods to quantitatively predict the formation of the protein corona, especially for functional compositions, remain unavailable. The...
Autores principales: | Ban, Zhan, Yuan, Peng, Yu, Fubo, Peng, Ting, Zhou, Qixing, Hu, Xiangang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229677/ https://www.ncbi.nlm.nih.gov/pubmed/32332167 http://dx.doi.org/10.1073/pnas.1919755117 |
Ejemplares similares
-
Development potential of nanoenabled agriculture projected using machine learning
por: Deng, Peng, et al.
Publicado: (2023) -
Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles
por: Yu, Fubo, et al.
Publicado: (2021) -
Vascular bifurcation influences the protein corona composition on nanoparticles and impacts their cellular uptake
por: Conjeevaram, Sridevi B., et al.
Publicado: (2022) -
Analyzing the vast coronavirus literature with CoronaCentral
por: Lever, Jake, et al.
Publicado: (2021) -
Experimental Tools to Study Molecular Recognition within the Nanoparticle Corona
por: Landry, Markita P., et al.
Publicado: (2014)