Cargando…
Estimating geographic subjective well-being from Twitter: A comparison of dictionary and data-driven language methods
Researchers and policy makers worldwide are interested in measuring the subjective well-being of populations. When users post on social media, they leave behind digital traces that reflect their thoughts and feelings. Aggregation of such digital traces may make it possible to monitor well-being at l...
Autores principales: | Jaidka, Kokil, Giorgi, Salvatore, Schwartz, H. Andrew, Kern, Margaret L., Ungar, Lyle H., Eichstaedt, Johannes C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229753/ https://www.ncbi.nlm.nih.gov/pubmed/32341156 http://dx.doi.org/10.1073/pnas.1906364117 |
Ejemplares similares
-
Cross-platform- and subgroup-differences in the well-being effects of Twitter, Instagram, and Facebook in the United States
por: Jaidka, Kokil
Publicado: (2022) -
Women are Warmer but No Less Assertive than Men: Gender and Language on Facebook
por: Park, Gregory, et al.
Publicado: (2016) -
Opioid death projections with AI-based forecasts using social media language
por: Matero, Matthew, et al.
Publicado: (2023) -
Author Correction: Opioid death projections with AI-based forecasts using social media language
por: Matero, Matthew, et al.
Publicado: (2023) -
Examining the Phenomenon of Quarter-Life Crisis Through Artificial Intelligence and the Language of Twitter
por: Agarwal, Shantenu, et al.
Publicado: (2020)