Cargando…

Nonalcoholic fatty liver disease, a potential risk factor of non-specific ST-T segment changes: data from a cross-sectional study

BACKGROUND: Non-specific ST-T segment changes are prevalent and are proven risk factors for early onset of cardiovascular diseases. They can increase all-cause mortality by 100∼200% and are candidate for early signs of cardiovascular changes. Nonalcoholic fatty liver disease (NAFLD) is prevalent wor...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Li, Bai, Tao, Zeng, Junchao, Yang, Rui, Yang, Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229768/
https://www.ncbi.nlm.nih.gov/pubmed/32440372
http://dx.doi.org/10.7717/peerj.9090
Descripción
Sumario:BACKGROUND: Non-specific ST-T segment changes are prevalent and are proven risk factors for early onset of cardiovascular diseases. They can increase all-cause mortality by 100∼200% and are candidate for early signs of cardiovascular changes. Nonalcoholic fatty liver disease (NAFLD) is prevalent worldwide and is one facet of a multisystem disease that confers substantial increases morbidity and mortality of nonalcoholic fatty liver-related cardiovascular diseases. It is unclear whether NAFLD is associated with non-specific ST-T changes warning early signs of cardiovascular changes. Therefore, we investigated this association. METHODS: A cross-sectional study was designed that included a sample consisting of 32,922 participants who underwent health examinations. Participants with missing information, excessive alcohol intake, viral hepatitis, chronic liver disease or established cardiovascular diseases were excluded. Electrocardiograms were used for analysis of non-specific ST-T segment changes. NAFLD was diagnosed by ultrasonographic detection of hepatic steatosis without other liver diseases. A multivariable logistic regression model was served to calculate the OR and 95% CI for non-specific ST-T segment changes. RESULTS: The prevalence of non-specific ST-T segment changes was 6.5% in participants with NAFLD, however, the prevalence of NAFLD was 42.9% in participants with non-specific ST-T segment changes. NAFLD was independently associated with non-specific ST-T segment changes (OR: 1.925, 95% CI: 1.727-2.143, P < 0.001). After adjusting for age, sex, heart rate, hypertension, body mass index, fasting glucose, total cholesterol, triglycerides, HDL-C, NAFLD remained an independent risk factor of non-specific ST-T segment changes (OR: 1.289, 95% CI: 1.122-1.480). CONCLUSION: Non-specific ST-T segment changes were independently associated with the presence of NAFLD after adjusting for potential confounders.