Cargando…
Upregulation of miR-340 Inhibits Tumor Growth and Mesenchymal Transition via Targeting c-MET in Glioblastoma
BACKGROUND: Epithelial–mesenchymal Transition (EMT) is involved in various cancers including glioblastoma. Our previous study has shown that miR-340 negatively correlated with EMT process in glioblastoma. PURPOSE: In the present study, we aim to explore the underlying molecular mechanisms of miR-340...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229788/ https://www.ncbi.nlm.nih.gov/pubmed/32494198 http://dx.doi.org/10.2147/CMAR.S250772 |
_version_ | 1783534822519472128 |
---|---|
author | Lin, Ning Li, Wentao Wang, Xiefeng Hou, Shiqiang Yu, Dong Zhao, Xingyuan Jin, Chunjing Yao, Guoquan Yan, Wei You, Yongping |
author_facet | Lin, Ning Li, Wentao Wang, Xiefeng Hou, Shiqiang Yu, Dong Zhao, Xingyuan Jin, Chunjing Yao, Guoquan Yan, Wei You, Yongping |
author_sort | Lin, Ning |
collection | PubMed |
description | BACKGROUND: Epithelial–mesenchymal Transition (EMT) is involved in various cancers including glioblastoma. Our previous study has shown that miR-340 negatively correlated with EMT process in glioblastoma. PURPOSE: In the present study, we aim to explore the underlying molecular mechanisms of miR-340 in EMT process of glioblastomas. MATERIALS AND METHODS: Using RT-qPCR assay, we analyzed the expression of miR-340 in glioma cell lines and normal human glia (NHA) cell line. Using CCK8, Colony formation assays, transwell and Western blot assays, we investigated tumor growth and EMT process. Using luciferase reporter assay, we confirmed a target of miR-340. RESULTS: Our results showed that miR-340 was down-regulated in glioma cell lines (U87, U251 and LN229) compared to NHA cells. MiR-340 overexpression remarkably inhibited cell proliferation and invasion as well as up-regulated E-cadherin expression and down-regulated N-cadherin, Vimentin, ZEB1, Slug and Snail expressions in U251 and LN229 cells. Further studies have confirmed c-MET as a target gene of miR-340. The EMT-inhibitory effect of miR-340 was lost after c-MET expression was restored. We also identified the antitumorigenic activity of miR-340 in vivo. CONCLUSION: These results demonstrated that miR-340 functioned as a tumor suppressor via targeting EMT process and could be a potential therapeutic candidate for treating glioblastomas. |
format | Online Article Text |
id | pubmed-7229788 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-72297882020-06-02 Upregulation of miR-340 Inhibits Tumor Growth and Mesenchymal Transition via Targeting c-MET in Glioblastoma Lin, Ning Li, Wentao Wang, Xiefeng Hou, Shiqiang Yu, Dong Zhao, Xingyuan Jin, Chunjing Yao, Guoquan Yan, Wei You, Yongping Cancer Manag Res Original Research BACKGROUND: Epithelial–mesenchymal Transition (EMT) is involved in various cancers including glioblastoma. Our previous study has shown that miR-340 negatively correlated with EMT process in glioblastoma. PURPOSE: In the present study, we aim to explore the underlying molecular mechanisms of miR-340 in EMT process of glioblastomas. MATERIALS AND METHODS: Using RT-qPCR assay, we analyzed the expression of miR-340 in glioma cell lines and normal human glia (NHA) cell line. Using CCK8, Colony formation assays, transwell and Western blot assays, we investigated tumor growth and EMT process. Using luciferase reporter assay, we confirmed a target of miR-340. RESULTS: Our results showed that miR-340 was down-regulated in glioma cell lines (U87, U251 and LN229) compared to NHA cells. MiR-340 overexpression remarkably inhibited cell proliferation and invasion as well as up-regulated E-cadherin expression and down-regulated N-cadherin, Vimentin, ZEB1, Slug and Snail expressions in U251 and LN229 cells. Further studies have confirmed c-MET as a target gene of miR-340. The EMT-inhibitory effect of miR-340 was lost after c-MET expression was restored. We also identified the antitumorigenic activity of miR-340 in vivo. CONCLUSION: These results demonstrated that miR-340 functioned as a tumor suppressor via targeting EMT process and could be a potential therapeutic candidate for treating glioblastomas. Dove 2020-05-12 /pmc/articles/PMC7229788/ /pubmed/32494198 http://dx.doi.org/10.2147/CMAR.S250772 Text en © 2020 Lin et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Lin, Ning Li, Wentao Wang, Xiefeng Hou, Shiqiang Yu, Dong Zhao, Xingyuan Jin, Chunjing Yao, Guoquan Yan, Wei You, Yongping Upregulation of miR-340 Inhibits Tumor Growth and Mesenchymal Transition via Targeting c-MET in Glioblastoma |
title | Upregulation of miR-340 Inhibits Tumor Growth and Mesenchymal Transition via Targeting c-MET in Glioblastoma |
title_full | Upregulation of miR-340 Inhibits Tumor Growth and Mesenchymal Transition via Targeting c-MET in Glioblastoma |
title_fullStr | Upregulation of miR-340 Inhibits Tumor Growth and Mesenchymal Transition via Targeting c-MET in Glioblastoma |
title_full_unstemmed | Upregulation of miR-340 Inhibits Tumor Growth and Mesenchymal Transition via Targeting c-MET in Glioblastoma |
title_short | Upregulation of miR-340 Inhibits Tumor Growth and Mesenchymal Transition via Targeting c-MET in Glioblastoma |
title_sort | upregulation of mir-340 inhibits tumor growth and mesenchymal transition via targeting c-met in glioblastoma |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229788/ https://www.ncbi.nlm.nih.gov/pubmed/32494198 http://dx.doi.org/10.2147/CMAR.S250772 |
work_keys_str_mv | AT linning upregulationofmir340inhibitstumorgrowthandmesenchymaltransitionviatargetingcmetinglioblastoma AT liwentao upregulationofmir340inhibitstumorgrowthandmesenchymaltransitionviatargetingcmetinglioblastoma AT wangxiefeng upregulationofmir340inhibitstumorgrowthandmesenchymaltransitionviatargetingcmetinglioblastoma AT houshiqiang upregulationofmir340inhibitstumorgrowthandmesenchymaltransitionviatargetingcmetinglioblastoma AT yudong upregulationofmir340inhibitstumorgrowthandmesenchymaltransitionviatargetingcmetinglioblastoma AT zhaoxingyuan upregulationofmir340inhibitstumorgrowthandmesenchymaltransitionviatargetingcmetinglioblastoma AT jinchunjing upregulationofmir340inhibitstumorgrowthandmesenchymaltransitionviatargetingcmetinglioblastoma AT yaoguoquan upregulationofmir340inhibitstumorgrowthandmesenchymaltransitionviatargetingcmetinglioblastoma AT yanwei upregulationofmir340inhibitstumorgrowthandmesenchymaltransitionviatargetingcmetinglioblastoma AT youyongping upregulationofmir340inhibitstumorgrowthandmesenchymaltransitionviatargetingcmetinglioblastoma |