Cargando…
Personalise antidepressant treatment for unipolar depression combining individual choices, risks and big data (PETRUSHKA): rationale and protocol
INTRODUCTION: Matching treatment to specific patients is too often a matter of trial and error, while treatment efficacy should be optimised by limiting risks and costs and by incorporating patients’ preferences. Factors influencing an individual’s drug response in major depressive disorder may incl...
Autores principales: | Tomlinson, Anneka, Furukawa, Toshi A, Efthimiou, Orestis, Salanti, Georgia, De Crescenzo, Franco, Singh, Ilina, Cipriani, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229905/ https://www.ncbi.nlm.nih.gov/pubmed/31645364 http://dx.doi.org/10.1136/ebmental-2019-300118 |
Ejemplares similares
-
The Kilim plot: A tool for visualizing network meta‐analysis results for multiple outcomes
por: Seo, Michael, et al.
Publicado: (2020) -
Development and validation of a meta-learner for combining statistical and machine learning prediction models in individuals with depression
por: Liu, Qiang, et al.
Publicado: (2022) -
Predicting outcomes at the individual patient level: what is the best method?
por: Liu, Qiang, et al.
Publicado: (2023) -
Comparative efficacy and acceptability of antidepressants in the long-term treatment of major depression: protocol for a systematic review and networkmeta-analysis
por: Shinohara, Kiyomi, et al.
Publicado: (2019) -
Petrushka Jeu de cartes /
por: Stravinsky, Igor, 1882-1971
Publicado: (1995)