Cargando…
Prediction of Resting Energy Expenditure in Children: May Artificial Neural Networks Improve Our Accuracy?
The inaccuracy of resting energy expenditure (REE) prediction formulae to calculate energy metabolism in children may lead to either under- or overestimated real caloric needs with clinical consequences. The aim of this paper was to apply artificial neural networks algorithms (ANNs) to REE predictio...
Autores principales: | De Cosmi, Valentina, Mazzocchi, Alessandra, Milani, Gregorio Paolo, Calderini, Edoardo, Scaglioni, Silvia, Bettocchi, Silvia, D’Oria, Veronica, Langer, Thomas, Spolidoro, Giulia C. I., Leone, Ludovica, Battezzati, Alberto, Bertoli, Simona, Leone, Alessandro, De Amicis, Ramona Silvana, Foppiani, Andrea, Agostoni, Carlo, Grossi, Enzo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230279/ https://www.ncbi.nlm.nih.gov/pubmed/32260581 http://dx.doi.org/10.3390/jcm9041026 |
Ejemplares similares
-
Artificial Neural Network Algorithms to Predict Resting Energy Expenditure in Critically Ill Children
por: Spolidoro, Giulia C. I., et al.
Publicado: (2021) -
The Role of Lipids in Human Milk and Infant Formulae
por: Mazzocchi, Alessandra, et al.
Publicado: (2018) -
External Validation of Equations to Estimate Resting Energy Expenditure in 2037 Children and Adolescents with and 389 without Obesity: A Cross-Sectional Study
por: Bedogni, Giorgio, et al.
Publicado: (2020) -
Effects of wearing a FFP2 mask on indirect calorimetry measurements: A pilot study
por: Bertoli, Simona, et al.
Publicado: (2021) -
The Metabolic Response to Stress and Infection in Critically Ill Children: The Opportunity of an Individualized Approach
por: De Cosmi, Valentina, et al.
Publicado: (2017)