Cargando…
Transfer Learning via Deep Neural Networks for Implant Fixture System Classification Using Periapical Radiographs
In the absence of accurate medical records, it is critical to correctly classify implant fixture systems using periapical radiographs to provide accurate diagnoses and treatments to patients or to respond to complications. The purpose of this study was to evaluate whether deep neural networks can id...
Autores principales: | Kim, Jong-Eun, Nam, Na-Eun, Shim, June-Sung, Jung, Yun-Hoa, Cho, Bong-Hae, Hwang, Jae Joon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230319/ https://www.ncbi.nlm.nih.gov/pubmed/32295304 http://dx.doi.org/10.3390/jcm9041117 |
Ejemplares similares
-
Transfer learning in a deep convolutional neural network for implant fixture classification: A pilot study
por: Kim, Hak-Sun, et al.
Publicado: (2022) -
Deep learning and clustering approaches for dental implant size classification based on periapical radiographs
por: Park, Ji-Hyun, et al.
Publicado: (2023) -
Classification and Properties of Dental Zirconia as Implant Fixtures and Superstructures
por: Ban, Seiji
Publicado: (2021) -
Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: A pilot study
por: Lee, Jae-Hong, et al.
Publicado: (2020) -
Image enhancement of digital periapical radiographs according to diagnostic tasks
por: Choi, Jin-Woo, et al.
Publicado: (2014)