Cargando…
Supplementation of Sulfur-Containing Amino Acids or Essential Amino Acids Does Not Reverse the Hepatic Lipid-Lowering Effect of a Protein-Rich Insect Meal in Obese Zucker Rats
The present study tested the hypothesis that the liver lipid-lowering effect of insect meal (IM) is caused by its low methionine concentration. A total of fifty, male obese Zucker rats were randomly assigned to five groups of 10 rats each (casein (C), IM, IM + Met, IM + Cys, and IM + EAA). While gro...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230462/ https://www.ncbi.nlm.nih.gov/pubmed/32252339 http://dx.doi.org/10.3390/nu12040987 |
Sumario: | The present study tested the hypothesis that the liver lipid-lowering effect of insect meal (IM) is caused by its low methionine concentration. A total of fifty, male obese Zucker rats were randomly assigned to five groups of 10 rats each (casein (C), IM, IM + Met, IM + Cys, and IM + EAA). While group C received a diet with casein, the IM-fed groups received a diet with IM as the protein source. In groups IM + Met, IM + Cys and IM + EAA, the diets were additionally supplemented with methionine, cysteine and essential amino acids (EAA), respectively. Hepatic concentrations of triacylglycerols and cholesterol, and hepatic mRNA levels and activities of lipogenic and cholesterogenic enzymes were markedly lower in the IM-fed groups than in group C (p < 0.05). All of these parameters either did not differ across the IM-fed groups or were only slightly higher in groups IM + Met, IM + Cys and IM+EAA than in the group IM. In conclusion, the results indicate that a difference in the amino acid composition between IM and casein, a low concentration of methionine in IM and a reduced cysteine synthesis secondary to a decreased methionine availability resulting from feeding IM are not causative for the lipid-lowering effect of IM. |
---|