Cargando…
Application of Continuous Glucose Monitoring for Assessment of Individual Carbohydrate Requirement during Ultramarathon Race
Background: The current study intended to evaluate the feasibility of the application of continuous glucose monitoring to guarantee optimal intake of carbohydrate to maintain blood glucose levels during a 160-km ultramarathon race. Methods: Seven ultramarathon runners (four male and three female) to...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230511/ https://www.ncbi.nlm.nih.gov/pubmed/32316458 http://dx.doi.org/10.3390/nu12041121 |
Sumario: | Background: The current study intended to evaluate the feasibility of the application of continuous glucose monitoring to guarantee optimal intake of carbohydrate to maintain blood glucose levels during a 160-km ultramarathon race. Methods: Seven ultramarathon runners (four male and three female) took part in the study. The glucose profile was monitored continuously throughout the race, which was divided into 11 segments by timing gates. Running speed in each segment was standardized to the average of the top five finishers for each gender. Food and drink intake during the race were recorded and carbohydrate and energy intake were calculated. Results: Observed glucose levels ranged between 61.9–252.0 mg/dL. Average glucose concentration differed from the start to the end of the race (104 ± 15.0 to 164 ± 30.5 SD mg/dL). The total amount of carbohydrate intake during the race ranged from 0.27 to 1.14 g/kg/h. Glucose concentration positively correlated with running speeds in segments (P < 0.005). Energy and carbohydrate intake positively correlated with overall running speed (P < 0.01). Conclusion: The present study demonstrates that continuous glucose monitoring could be practical to guarantee optimal carbohydrate intake for each ultramarathon runner. |
---|