Cargando…
First Trimester Microelements and Their Relationships with Pregnancy Outcomes and Complications
Microelements involved in the oxidative balance have a significant impact on human health, but their role in pregnancy are poorly studied. We examined the relationships between first trimester levels of selenium (Se), iron (Fe), zinc (Zn), and copper (Cu), as well as maternal characteristics and pre...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230599/ https://www.ncbi.nlm.nih.gov/pubmed/32316207 http://dx.doi.org/10.3390/nu12041108 |
_version_ | 1783534992207380480 |
---|---|
author | Lewandowska, Małgorzata Więckowska, Barbara Sajdak, Stefan Lubiński, Jan |
author_facet | Lewandowska, Małgorzata Więckowska, Barbara Sajdak, Stefan Lubiński, Jan |
author_sort | Lewandowska, Małgorzata |
collection | PubMed |
description | Microelements involved in the oxidative balance have a significant impact on human health, but their role in pregnancy are poorly studied. We examined the relationships between first trimester levels of selenium (Se), iron (Fe), zinc (Zn), and copper (Cu), as well as maternal characteristics and pregnancy results. The data came from a Polish prospective cohort of women in a single pregnancy without chronic diseases. A group of 563 women who had a complete set of data, including serum microelements in the 10–14th week was examined, and the following were found: 47 deliveries <37th week; 48 cases of birth weight <10th and 64 newborns >90th percentile; 13 intrauterine growth restriction (IUGR) cases; 105 gestational hypertension (GH) and 15 preeclampsia (PE) cases; and 110 gestational diabetes mellitus (GDM) cases. The microelements were quantified using mass spectrometry. The average concentrations (and ranges) of the elements were as follows: Se: 60.75 µg/L (40.91–125.54); Zn: 618.50 µg/L (394.04–3238.90); Cu: 1735.91 µg/L (883.61–3956.76); and Fe: 1018.33 µg/L (217.55–2806.24). In the multivariate logistic regression, we found that an increase in Se of 1 µg/L reduces the risk of GH by 6% (AOR = 0.94; p = 0.004), the risk of IUGR by 11% (AOR = 0.89; p = 0.013), and the risk of birth <34th week by 7% (but close to the significance) (AOR = 0.93; p = 0.061). An increase in Fe of 100 µg/L reduces the risk of PE by 27% (AOR = 0.73; p = 0.009). In the multivariable linear regression, we found negative strong associations between prepregnancy BMI, Se (β = −0.130; p = 0.002), and Fe (β = −0.164; p < 0.0001), but positive associations with Cu (β = 0.320; p < 0.000001). The relationships between Se and maternal age (β = 0.167; p < 0.0001), Se and smoking (β = −0.106; p = 0.011) and Cu, and gestational age from the 10–14th week (β = 0.142; p < 0.001) were also found. Secondary education was associated with Zn (β = 0.132; p = 0.004) and higher education was associated with Cu (β = −0.102; p = 0.023). A higher financial status was associated with Fe (β = 0.195; p = 0.005). Other relationships were statistically insignificant. Further research is needed to clarify relationships between first trimester microelements and pregnancy complications. In addition, attention should be paid to lifestyle-related and socioeconomic factors that affect microelement levels. |
format | Online Article Text |
id | pubmed-7230599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72305992020-05-22 First Trimester Microelements and Their Relationships with Pregnancy Outcomes and Complications Lewandowska, Małgorzata Więckowska, Barbara Sajdak, Stefan Lubiński, Jan Nutrients Article Microelements involved in the oxidative balance have a significant impact on human health, but their role in pregnancy are poorly studied. We examined the relationships between first trimester levels of selenium (Se), iron (Fe), zinc (Zn), and copper (Cu), as well as maternal characteristics and pregnancy results. The data came from a Polish prospective cohort of women in a single pregnancy without chronic diseases. A group of 563 women who had a complete set of data, including serum microelements in the 10–14th week was examined, and the following were found: 47 deliveries <37th week; 48 cases of birth weight <10th and 64 newborns >90th percentile; 13 intrauterine growth restriction (IUGR) cases; 105 gestational hypertension (GH) and 15 preeclampsia (PE) cases; and 110 gestational diabetes mellitus (GDM) cases. The microelements were quantified using mass spectrometry. The average concentrations (and ranges) of the elements were as follows: Se: 60.75 µg/L (40.91–125.54); Zn: 618.50 µg/L (394.04–3238.90); Cu: 1735.91 µg/L (883.61–3956.76); and Fe: 1018.33 µg/L (217.55–2806.24). In the multivariate logistic regression, we found that an increase in Se of 1 µg/L reduces the risk of GH by 6% (AOR = 0.94; p = 0.004), the risk of IUGR by 11% (AOR = 0.89; p = 0.013), and the risk of birth <34th week by 7% (but close to the significance) (AOR = 0.93; p = 0.061). An increase in Fe of 100 µg/L reduces the risk of PE by 27% (AOR = 0.73; p = 0.009). In the multivariable linear regression, we found negative strong associations between prepregnancy BMI, Se (β = −0.130; p = 0.002), and Fe (β = −0.164; p < 0.0001), but positive associations with Cu (β = 0.320; p < 0.000001). The relationships between Se and maternal age (β = 0.167; p < 0.0001), Se and smoking (β = −0.106; p = 0.011) and Cu, and gestational age from the 10–14th week (β = 0.142; p < 0.001) were also found. Secondary education was associated with Zn (β = 0.132; p = 0.004) and higher education was associated with Cu (β = −0.102; p = 0.023). A higher financial status was associated with Fe (β = 0.195; p = 0.005). Other relationships were statistically insignificant. Further research is needed to clarify relationships between first trimester microelements and pregnancy complications. In addition, attention should be paid to lifestyle-related and socioeconomic factors that affect microelement levels. MDPI 2020-04-16 /pmc/articles/PMC7230599/ /pubmed/32316207 http://dx.doi.org/10.3390/nu12041108 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lewandowska, Małgorzata Więckowska, Barbara Sajdak, Stefan Lubiński, Jan First Trimester Microelements and Their Relationships with Pregnancy Outcomes and Complications |
title | First Trimester Microelements and Their Relationships with Pregnancy Outcomes and Complications |
title_full | First Trimester Microelements and Their Relationships with Pregnancy Outcomes and Complications |
title_fullStr | First Trimester Microelements and Their Relationships with Pregnancy Outcomes and Complications |
title_full_unstemmed | First Trimester Microelements and Their Relationships with Pregnancy Outcomes and Complications |
title_short | First Trimester Microelements and Their Relationships with Pregnancy Outcomes and Complications |
title_sort | first trimester microelements and their relationships with pregnancy outcomes and complications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230599/ https://www.ncbi.nlm.nih.gov/pubmed/32316207 http://dx.doi.org/10.3390/nu12041108 |
work_keys_str_mv | AT lewandowskamałgorzata firsttrimestermicroelementsandtheirrelationshipswithpregnancyoutcomesandcomplications AT wieckowskabarbara firsttrimestermicroelementsandtheirrelationshipswithpregnancyoutcomesandcomplications AT sajdakstefan firsttrimestermicroelementsandtheirrelationshipswithpregnancyoutcomesandcomplications AT lubinskijan firsttrimestermicroelementsandtheirrelationshipswithpregnancyoutcomesandcomplications |