Cargando…

Novel Variants in GDF9 Gene Affect Promoter Activity and Litter Size in Mongolia Sheep

Litter size is an economically important trait in sheep breeding. The objectives of this study were as follows: (1) to ascertain if any of the 19 known variants in the BMPRIB, BMP15, and GDF9 genes are present and associated with the litter size of Mongolia sheep; (2) to identify novel variants in G...

Descripción completa

Detalles Bibliográficos
Autores principales: Tong, Bin, Wang, Jiapeng, Cheng, Zixuan, Liu, Jiasen, Wu, Yiran, Li, Yunhua, Bai, Chunling, Zhao, Suwen, Yu, Haiquan, Li, Guangpeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230991/
https://www.ncbi.nlm.nih.gov/pubmed/32235645
http://dx.doi.org/10.3390/genes11040375
Descripción
Sumario:Litter size is an economically important trait in sheep breeding. The objectives of this study were as follows: (1) to ascertain if any of the 19 known variants in the BMPRIB, BMP15, and GDF9 genes are present and associated with the litter size of Mongolia sheep; (2) to identify novel variants in GDF9 and perform association analysis; and (3) to validate the effects of these GDF9 promoter variants on the activity of the gene. The results of the 19 known variants showed that the FecB(B) affected the litter size of Mongolia sheep (p < 0.001). The association analysis results of novel variants showed that the g.46544883A>G (GenBank accession: NC_040256, the same below) in the 3’ untranslated region (3’ UTR), the c.1040T>C (Phe347Ser) in the exon 2, and the g.46547859C>T SNP in the promotor of GDF9 were significantly associated with litter size of Mongolia ewes (p < 0.01, p < 0.05, and p < 0.001, respectively). In addition, the GDF9 promoter activity analysis showed that the C allele at the −332 position (g.46547859C>T) could decrease luciferase activity compared with the T allele (p < 0.01). Our findings may facilitate effective marker-assisted selection to increase litter size in Mongolia sheep populations, as well as bring new insights into GDF9 expression.