Cargando…

A One-Dimensional Effective Model for Nanotransistors in Landauer–Büttiker Formalism

In a series of publications, we developed a compact model for nanotransistors in which quantum transport in a variety of industrial nano-FETs was described quantitatively. The compact nanotransistor model allows for the extraction of important device parameters as the effective height of the source-...

Descripción completa

Detalles Bibliográficos
Autor principal: Wulf, Ulrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231077/
https://www.ncbi.nlm.nih.gov/pubmed/32235540
http://dx.doi.org/10.3390/mi11040359
Descripción
Sumario:In a series of publications, we developed a compact model for nanotransistors in which quantum transport in a variety of industrial nano-FETs was described quantitatively. The compact nanotransistor model allows for the extraction of important device parameters as the effective height of the source-drain barrier, device heating, and the quality of the coupling between conduction channel and the contacts. Starting from a basic description of quantum transport in a multi-terminal device in Landauer–Büttiker formalism, we give a detailed derivation of all relevant formulas necessary to construct our compact nanotransistor model. Here we make extensive use of the the R-matrix method.