Cargando…
Hybrid Internal Combustion Engine Based Auxiliary Power Unit
The brief presents some principles of the ON/OFF operational strategy applied to energy management of a hybrid internal combustion engine (ICE) based auxiliary power unit (APU). It is shown that significant reduction of fuel consumption (78% for the example system presented) and maintenance expenses...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231356/ https://www.ncbi.nlm.nih.gov/pubmed/32326358 http://dx.doi.org/10.3390/mi11040438 |
Sumario: | The brief presents some principles of the ON/OFF operational strategy applied to energy management of a hybrid internal combustion engine (ICE) based auxiliary power unit (APU). It is shown that significant reduction of fuel consumption (78% for the example system presented) and maintenance expenses (80% operation time decrease was attained by the system) may be achieved by such a strategy, shifting the system operation point towards corresponding optimal region. The side effect of aggravated amount of starting events is cured by employing an actively balanced supercapacitor (SC)-based emergency starter (SCS). The SCS operates as short-time energy storage device, charging from the battery at a low rate and then providing a current burst required for proper internal combustion engine starting. Current sensorless method of automatic connection (based on bus voltage sensing) and disconnection (based on sensing the voltage across bidirectional MOSFET-based switch) of the SCS is also proposed. The proposed circuitry, successfully validated by experiments, may be arbitrarily scaled up or down according to application rating. |
---|