Cargando…
Improving the Recognition Accuracy of Memristive Neural Networks via Homogenized Analog Type Conductance Quantization
Conductance quantization (QC) phenomena occurring in metal oxide based memristors demonstrate great potential for high-density data storage through multilevel switching, and analog synaptic weight update for effective training of the artificial neural networks. Continuous, linear and symmetrical mod...
Autores principales: | Chen, Qilai, Han, Tingting, Tang, Minghua, Zhang, Zhang, Zheng, Xuejun, Liu, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231361/ https://www.ncbi.nlm.nih.gov/pubmed/32325690 http://dx.doi.org/10.3390/mi11040427 |
Ejemplares similares
-
A Quantized Convolutional Neural Network Implemented With Memristor for Image Denoising and Recognition
por: Zhang, Yuejun, et al.
Publicado: (2021) -
Memristive GAN in Analog
por: Krestinskaya, O., et al.
Publicado: (2020) -
Direct Observation of Structural Deformation Immunity for Understanding Oxygen Plasma Treatment-Enhanced Resistive Switching in HfO(x)-Based Memristive Devices
por: Wang, Dong, et al.
Publicado: (2019) -
A Novel Memristive Neural Network Circuit and Its Application in Character Recognition
por: Zhang, Xinrui, et al.
Publicado: (2022) -
Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning
por: Mou, Xing, et al.
Publicado: (2021)