Cargando…
Cross-Subject Seizure Detection in EEGs Using Deep Transfer Learning
Electroencephalography (EEG) plays an import role in monitoring the brain activities of patients with epilepsy and has been extensively used to diagnose epilepsy. Clinically reading tens or even hundreds of hours of EEG recordings is very time consuming. Therefore, automatic detection of seizure is...
Autores principales: | Zhang, Baocan, Wang, Wennan, Xiao, Yutian, Xiao, Shixiao, Chen, Shuaichen, Chen, Sirui, Xu, Gaowei, Che, Wenliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231423/ https://www.ncbi.nlm.nih.gov/pubmed/32454884 http://dx.doi.org/10.1155/2020/7902072 |
Ejemplares similares
-
A One-Dimensional CNN-LSTM Model for Epileptic Seizure Recognition Using EEG Signal Analysis
por: Xu, Gaowei, et al.
Publicado: (2020) -
A Novel Deep Neural Network for Robust Detection of Seizures Using EEG Signals
por: Zhao, Wei, et al.
Publicado: (2020) -
Hybrid transfer learning strategy for cross-subject EEG emotion recognition
por: Lu, Wei, et al.
Publicado: (2023) -
An Investigation of Deep Learning Models for EEG-Based Emotion Recognition
por: Zhang, Yaqing, et al.
Publicado: (2020) -
Expert and deep learning model identification of iEEG seizures and seizure onset times
por: Arcot Desai, Sharanya, et al.
Publicado: (2023)