Cargando…
Pao Pereira extract suppresses benign prostatic hyperplasia by inhibiting inflammation-associated NFκB signaling
BACKGROUND: Our previous study revealed the extract from the bark of an Amazonian tree Pao Pereira can suppress benign prostatic hyperplasia (BPH) in a rat model. Herein, we examined its inhibitory effects on human BPH cells and dissect its molecular mechanism. METHODS: We applied Pao extract to hum...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7231430/ https://www.ncbi.nlm.nih.gov/pubmed/32416730 http://dx.doi.org/10.1186/s12906-020-02943-2 |
Sumario: | BACKGROUND: Our previous study revealed the extract from the bark of an Amazonian tree Pao Pereira can suppress benign prostatic hyperplasia (BPH) in a rat model. Herein, we examined its inhibitory effects on human BPH cells and dissect its molecular mechanism. METHODS: We applied Pao extract to human BPH epithelial BPH-1 and prostate myofibroblast WPMY-1 cells. Cell viability, apoptosis and immunoblotting were performed, followed by gene expression profiling and gene set enrichment analysis (GSEA) to detect the differentially expressed genes and signaling pathway induced by Pao extract. Human ex vivo BPH explant organ culture was also used to examine the effects of Pao extract on human BPH tissues. RESULTS: Pao extract treatment inhibited viability and induced apoptosis in human BPH-1 and WPMY-1 cells. Gene expression profiling and the following validation indicated that the expression levels of pro-apoptotic genes (eg. PCDC4, CHOP and FBXO32) were induced by Pao extract in both two cell lines. GSEA further revealed that Pao extract treatment was negatively associated with the activation of NFκB signaling. Pao extract suppressed the transcriptional activity of NFκB and down-regulated its target genes involved in inflammation (CXCL5, CXCL6 and CXCL12) and extracellular matrix (ECM) remodeling (HAS2, TNC and MMP13) in both cultured cells and human ex vivo BPH explants. CONCLUSION: In both BPH epithelial and stromal cells, Pao extract induces apoptosis by upregulating the pro-apoptotic genes and inhibiting the inflammation-associated NFκB signaling via reducing phosphorylation of NFκB subunit RelA. Our data suggest that Pao extract may be a promising phytotherapeutic agent for BPH. |
---|