Cargando…
Electronegative low‐density lipoprotein of patients with metabolic syndrome induces pathogenesis of aorta through disruption of the stimulated by retinoic acid 6 cascade
AIMS/INTRODUCTION: Electronegative low‐density lipoprotein (L5) is the most atherogenic fraction of low‐density lipoprotein and is elevated in people with metabolic syndrome (MetS), whereas the retinol‐binding protein 4 receptor (stimulated by retinoic acid 6 [STRA6]) cascade is disrupted in various...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232312/ https://www.ncbi.nlm.nih.gov/pubmed/31597015 http://dx.doi.org/10.1111/jdi.13158 |
_version_ | 1783535358940545024 |
---|---|
author | Chen, Chao‐Hung Ke, Liang‐Yin Chan, Hua‐Chen Chu, Chih‐Sheng Lee, An‐Sheng Lin, Kun‐Der Lee, Mei‐Yueh Hsiao, Pi‐Jung Chen, Chu‐Huang Shin, Shyi‐Jang |
author_facet | Chen, Chao‐Hung Ke, Liang‐Yin Chan, Hua‐Chen Chu, Chih‐Sheng Lee, An‐Sheng Lin, Kun‐Der Lee, Mei‐Yueh Hsiao, Pi‐Jung Chen, Chu‐Huang Shin, Shyi‐Jang |
author_sort | Chen, Chao‐Hung |
collection | PubMed |
description | AIMS/INTRODUCTION: Electronegative low‐density lipoprotein (L5) is the most atherogenic fraction of low‐density lipoprotein and is elevated in people with metabolic syndrome (MetS), whereas the retinol‐binding protein 4 receptor (stimulated by retinoic acid 6 [STRA6]) cascade is disrupted in various organs of patients with obesity‐related diseases. Our objective was to investigate whether L5 from MetS patients capably induces pathogenesis of aorta through disrupting the STRA6 cascade. MATERIAL AND METHODS: We examined the in vivo and in vitro effects of L5 on the STRA6 cascade and aortic atherogenic markers. To investigate the role of this cascade on atherosclerotic formation, crbp1 transfection was carried out in vitro. RESULTS: This study shows that L5 activates atherogenic markers (p38 mitogen‐activated protein kinases, pSmad2 and matrix metallopeptidase 9) and simultaneously suppresses STRA6 signals (STRA6, cellular retinol‐binding protein 1, lecithin‐retinol acyltransferase, retinoic acid receptor‐α and retinoid X receptor‐α) in aortas of L5‐injected mice and L5‐treated human aortic endothelial cell lines and human aortic smooth muscle cell lines. These L5‐induced changes of the STRA6 cascade and atherogenic markers were reversed in aortas of LOX1(−/−) mice and in LOX1 ribonucleic acid‐silenced human aortic endothelial cell lines and human aortic smooth muscle cell lines. Furthermore, crbp1 gene transfection reversed the disruption of the STRA6 cascade, the phosphorylation of p38 mitogen‐activated protein kinases and Smad2, and the elevation of matrix metallopeptidase 9 in L5‐treated human aortic endothelial cell lines. CONCLUSIONS: This study shows that L5 from MetS patients induces atherogenic markers by disrupting STRA6 signaling. Suppression of STRA6 might be one novel pathogenesis of aorta in patients with MetS. |
format | Online Article Text |
id | pubmed-7232312 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72323122020-05-19 Electronegative low‐density lipoprotein of patients with metabolic syndrome induces pathogenesis of aorta through disruption of the stimulated by retinoic acid 6 cascade Chen, Chao‐Hung Ke, Liang‐Yin Chan, Hua‐Chen Chu, Chih‐Sheng Lee, An‐Sheng Lin, Kun‐Der Lee, Mei‐Yueh Hsiao, Pi‐Jung Chen, Chu‐Huang Shin, Shyi‐Jang J Diabetes Investig Articles AIMS/INTRODUCTION: Electronegative low‐density lipoprotein (L5) is the most atherogenic fraction of low‐density lipoprotein and is elevated in people with metabolic syndrome (MetS), whereas the retinol‐binding protein 4 receptor (stimulated by retinoic acid 6 [STRA6]) cascade is disrupted in various organs of patients with obesity‐related diseases. Our objective was to investigate whether L5 from MetS patients capably induces pathogenesis of aorta through disrupting the STRA6 cascade. MATERIAL AND METHODS: We examined the in vivo and in vitro effects of L5 on the STRA6 cascade and aortic atherogenic markers. To investigate the role of this cascade on atherosclerotic formation, crbp1 transfection was carried out in vitro. RESULTS: This study shows that L5 activates atherogenic markers (p38 mitogen‐activated protein kinases, pSmad2 and matrix metallopeptidase 9) and simultaneously suppresses STRA6 signals (STRA6, cellular retinol‐binding protein 1, lecithin‐retinol acyltransferase, retinoic acid receptor‐α and retinoid X receptor‐α) in aortas of L5‐injected mice and L5‐treated human aortic endothelial cell lines and human aortic smooth muscle cell lines. These L5‐induced changes of the STRA6 cascade and atherogenic markers were reversed in aortas of LOX1(−/−) mice and in LOX1 ribonucleic acid‐silenced human aortic endothelial cell lines and human aortic smooth muscle cell lines. Furthermore, crbp1 gene transfection reversed the disruption of the STRA6 cascade, the phosphorylation of p38 mitogen‐activated protein kinases and Smad2, and the elevation of matrix metallopeptidase 9 in L5‐treated human aortic endothelial cell lines. CONCLUSIONS: This study shows that L5 from MetS patients induces atherogenic markers by disrupting STRA6 signaling. Suppression of STRA6 might be one novel pathogenesis of aorta in patients with MetS. John Wiley and Sons Inc. 2019-11-06 2020-05 /pmc/articles/PMC7232312/ /pubmed/31597015 http://dx.doi.org/10.1111/jdi.13158 Text en © 2019 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Articles Chen, Chao‐Hung Ke, Liang‐Yin Chan, Hua‐Chen Chu, Chih‐Sheng Lee, An‐Sheng Lin, Kun‐Der Lee, Mei‐Yueh Hsiao, Pi‐Jung Chen, Chu‐Huang Shin, Shyi‐Jang Electronegative low‐density lipoprotein of patients with metabolic syndrome induces pathogenesis of aorta through disruption of the stimulated by retinoic acid 6 cascade |
title | Electronegative low‐density lipoprotein of patients with metabolic syndrome induces pathogenesis of aorta through disruption of the stimulated by retinoic acid 6 cascade |
title_full | Electronegative low‐density lipoprotein of patients with metabolic syndrome induces pathogenesis of aorta through disruption of the stimulated by retinoic acid 6 cascade |
title_fullStr | Electronegative low‐density lipoprotein of patients with metabolic syndrome induces pathogenesis of aorta through disruption of the stimulated by retinoic acid 6 cascade |
title_full_unstemmed | Electronegative low‐density lipoprotein of patients with metabolic syndrome induces pathogenesis of aorta through disruption of the stimulated by retinoic acid 6 cascade |
title_short | Electronegative low‐density lipoprotein of patients with metabolic syndrome induces pathogenesis of aorta through disruption of the stimulated by retinoic acid 6 cascade |
title_sort | electronegative low‐density lipoprotein of patients with metabolic syndrome induces pathogenesis of aorta through disruption of the stimulated by retinoic acid 6 cascade |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232312/ https://www.ncbi.nlm.nih.gov/pubmed/31597015 http://dx.doi.org/10.1111/jdi.13158 |
work_keys_str_mv | AT chenchaohung electronegativelowdensitylipoproteinofpatientswithmetabolicsyndromeinducespathogenesisofaortathroughdisruptionofthestimulatedbyretinoicacid6cascade AT keliangyin electronegativelowdensitylipoproteinofpatientswithmetabolicsyndromeinducespathogenesisofaortathroughdisruptionofthestimulatedbyretinoicacid6cascade AT chanhuachen electronegativelowdensitylipoproteinofpatientswithmetabolicsyndromeinducespathogenesisofaortathroughdisruptionofthestimulatedbyretinoicacid6cascade AT chuchihsheng electronegativelowdensitylipoproteinofpatientswithmetabolicsyndromeinducespathogenesisofaortathroughdisruptionofthestimulatedbyretinoicacid6cascade AT leeansheng electronegativelowdensitylipoproteinofpatientswithmetabolicsyndromeinducespathogenesisofaortathroughdisruptionofthestimulatedbyretinoicacid6cascade AT linkunder electronegativelowdensitylipoproteinofpatientswithmetabolicsyndromeinducespathogenesisofaortathroughdisruptionofthestimulatedbyretinoicacid6cascade AT leemeiyueh electronegativelowdensitylipoproteinofpatientswithmetabolicsyndromeinducespathogenesisofaortathroughdisruptionofthestimulatedbyretinoicacid6cascade AT hsiaopijung electronegativelowdensitylipoproteinofpatientswithmetabolicsyndromeinducespathogenesisofaortathroughdisruptionofthestimulatedbyretinoicacid6cascade AT chenchuhuang electronegativelowdensitylipoproteinofpatientswithmetabolicsyndromeinducespathogenesisofaortathroughdisruptionofthestimulatedbyretinoicacid6cascade AT shinshyijang electronegativelowdensitylipoproteinofpatientswithmetabolicsyndromeinducespathogenesisofaortathroughdisruptionofthestimulatedbyretinoicacid6cascade |