Cargando…

Soy Metabolism by Gut Microbiota from Patients with Precancerous Intestinal Lesions

Background: Colorectal cancer (CRC) requires the presence of a variety of factors predisposing a tumorigenic milieu. Excluding familial clustering and hereditary CRC syndromes, the development of sporadic CRC from precancerous lesions is influenced by tissue inflammation, modulation of intestinal im...

Descripción completa

Detalles Bibliográficos
Autores principales: Polimeno, Lorenzo, Barone, Michele, Mosca, Adriana, Viggiani, Maria Teresa, Joukar, Farahnaz, Mansour-Ghanaei, Fariborz, Mavaddati, Sara, Daniele, Antonella, Debellis, Lucantonio, Bilancia, Massimo, Santacroce, Luigi, Di Leo, Alfredo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232402/
https://www.ncbi.nlm.nih.gov/pubmed/32218321
http://dx.doi.org/10.3390/microorganisms8040469
Descripción
Sumario:Background: Colorectal cancer (CRC) requires the presence of a variety of factors predisposing a tumorigenic milieu. Excluding familial clustering and hereditary CRC syndromes, the development of sporadic CRC from precancerous lesions is influenced by tissue inflammation, modulation of intestinal immunity, hormones, dietary habits and gut microbiota composition. As concerning the last two aspects, the intestinal presence of equol, the most biologically active metabolite of the soy isoflavone daidzein and the presence of a genetic determinant of gut microbiota able to metabolize daidzein, seem to lower the CRC risk. It has been hypothesized that the anaerobic microorganisms of the Bacteroides genus play a role in equol production. Aim: To evaluate the presence of (i) anaerobic gut microbiota and (ii) the urinary levels of soy isoflavones (daidzein, genistein and equol) in patients with and without precancerous lesions, challenged with a daidzein-rich soy extract. Methods: Consecutive subjects undergoing colonoscopy participated to the study. Feces were collected from all patients one week before colonoscopy for gut microbiota studies. After the endoscopy examination and the histological evaluation, 40 subjects, 20 with sporadic colorectal adenomas (SCA/P group) and 20 without proliferative lesions (control group) were enrolled for the study. Urine levels of soy isoflavones daidzein, genistein and their metabolite equol, were determined by high performance liquid chromatographic (HPLC) analysis and gut microbiota analysis was performed by Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) procedure. Results: Seventeen different bacterial species were identified in the fecal samples of the forty subjects participating to the study. Ten bacterial species resulted anaerobic Gram-negative bacteria, all belonging to the Bacteroides genus. A significant difference of bacteria species was evidenced in the fecal samples of the two groups of subjects. Particularly important was the evidence of Parabacteroides distasonis, Clostridium clostridioforme and Pediococcus pentasaceus only in control fecal samples, such as the presence of Bacteroides fragilis and Prevotella melaningenica only in SCA/P fecal samples. Concerning the soy isoflavones levels, no statistically significant differences were revealed in the genistein and daidzein urinary levels between the two groups of subjects. On the contrary, urinary equol levels were undetectable in ten SCA/P subjects and in two controls; moreover, when present, the levels of urinary equol were significantly lower in SCA/P subjects compared to controls (0.24 ± 0.27 mg/24 hrs vs. 21.25 ± 4.3 mg/24 hrs, respectively, p = 1.12 × 10(−6)). Conclusions: Our results suggest that the presence of anaerobic Bacteroides in the colon, and the production of equol from soy, could determine a milieu able to contrast the development of colonic mucosa proliferative lesions.