Cargando…

Bacteriophages Promote Metabolic Changes in Bacteria Biofilm

Bacterial biofilm provides bacteria with resistance and protection against conventional antimicrobial agents and the host immune system. Bacteriophages are known to move across the biofilm to make it permeable to antimicrobials. Mineral hydroxyapatite (HA) can improve the lytic activity of bacteriop...

Descripción completa

Detalles Bibliográficos
Autores principales: Papaianni, Marina, Cuomo, Paola, Fulgione, Andrea, Albanese, Donatella, Gallo, Monica, Paris, Debora, Motta, Andrea, Iannelli, Domenico, Capparelli, Rosanna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232408/
https://www.ncbi.nlm.nih.gov/pubmed/32231093
http://dx.doi.org/10.3390/microorganisms8040480
_version_ 1783535380216152064
author Papaianni, Marina
Cuomo, Paola
Fulgione, Andrea
Albanese, Donatella
Gallo, Monica
Paris, Debora
Motta, Andrea
Iannelli, Domenico
Capparelli, Rosanna
author_facet Papaianni, Marina
Cuomo, Paola
Fulgione, Andrea
Albanese, Donatella
Gallo, Monica
Paris, Debora
Motta, Andrea
Iannelli, Domenico
Capparelli, Rosanna
author_sort Papaianni, Marina
collection PubMed
description Bacterial biofilm provides bacteria with resistance and protection against conventional antimicrobial agents and the host immune system. Bacteriophages are known to move across the biofilm to make it permeable to antimicrobials. Mineral hydroxyapatite (HA) can improve the lytic activity of bacteriophages, and, together with eicosanoic acid (C20:0), can destroy the biofilm structure. Here, we demonstrate the efficacy of the combined use of phage, HA and C20:0 against Xanthomonas campestris pv campestris (Xcc) biofilm. We used nuclear magnetic resonance (NMR)-based metabolomics to investigate the molecular determinants related to the lytic action, aiming at identifying the metabolic pathways dysregulated by phage treatment. Furthermore, we identified specific markers (amino acids, lactate and galactomannan) which are involved in the control of biofilm stability. Our data show that Xccφ1, alone or in combination with HA and C20:0, interferes with the metabolic pathways involved in biofilm formation. The approach described here might be extended to other biofilm-producing bacteria.
format Online
Article
Text
id pubmed-7232408
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72324082020-05-22 Bacteriophages Promote Metabolic Changes in Bacteria Biofilm Papaianni, Marina Cuomo, Paola Fulgione, Andrea Albanese, Donatella Gallo, Monica Paris, Debora Motta, Andrea Iannelli, Domenico Capparelli, Rosanna Microorganisms Brief Report Bacterial biofilm provides bacteria with resistance and protection against conventional antimicrobial agents and the host immune system. Bacteriophages are known to move across the biofilm to make it permeable to antimicrobials. Mineral hydroxyapatite (HA) can improve the lytic activity of bacteriophages, and, together with eicosanoic acid (C20:0), can destroy the biofilm structure. Here, we demonstrate the efficacy of the combined use of phage, HA and C20:0 against Xanthomonas campestris pv campestris (Xcc) biofilm. We used nuclear magnetic resonance (NMR)-based metabolomics to investigate the molecular determinants related to the lytic action, aiming at identifying the metabolic pathways dysregulated by phage treatment. Furthermore, we identified specific markers (amino acids, lactate and galactomannan) which are involved in the control of biofilm stability. Our data show that Xccφ1, alone or in combination with HA and C20:0, interferes with the metabolic pathways involved in biofilm formation. The approach described here might be extended to other biofilm-producing bacteria. MDPI 2020-03-28 /pmc/articles/PMC7232408/ /pubmed/32231093 http://dx.doi.org/10.3390/microorganisms8040480 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Brief Report
Papaianni, Marina
Cuomo, Paola
Fulgione, Andrea
Albanese, Donatella
Gallo, Monica
Paris, Debora
Motta, Andrea
Iannelli, Domenico
Capparelli, Rosanna
Bacteriophages Promote Metabolic Changes in Bacteria Biofilm
title Bacteriophages Promote Metabolic Changes in Bacteria Biofilm
title_full Bacteriophages Promote Metabolic Changes in Bacteria Biofilm
title_fullStr Bacteriophages Promote Metabolic Changes in Bacteria Biofilm
title_full_unstemmed Bacteriophages Promote Metabolic Changes in Bacteria Biofilm
title_short Bacteriophages Promote Metabolic Changes in Bacteria Biofilm
title_sort bacteriophages promote metabolic changes in bacteria biofilm
topic Brief Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232408/
https://www.ncbi.nlm.nih.gov/pubmed/32231093
http://dx.doi.org/10.3390/microorganisms8040480
work_keys_str_mv AT papaiannimarina bacteriophagespromotemetabolicchangesinbacteriabiofilm
AT cuomopaola bacteriophagespromotemetabolicchangesinbacteriabiofilm
AT fulgioneandrea bacteriophagespromotemetabolicchangesinbacteriabiofilm
AT albanesedonatella bacteriophagespromotemetabolicchangesinbacteriabiofilm
AT gallomonica bacteriophagespromotemetabolicchangesinbacteriabiofilm
AT parisdebora bacteriophagespromotemetabolicchangesinbacteriabiofilm
AT mottaandrea bacteriophagespromotemetabolicchangesinbacteriabiofilm
AT iannellidomenico bacteriophagespromotemetabolicchangesinbacteriabiofilm
AT capparellirosanna bacteriophagespromotemetabolicchangesinbacteriabiofilm