Cargando…
Suppression of nbe-miR1919c-5p Expression in Nicotiana benthamiana Enhances Tobacco Curly Shoot Virus and Its Betasatellite Co-Infection
MicroRNAs (miRNAs) are non-coding but functional RNA molecules of 21–25 nucleotides in length. MiRNAs play significant regulatory roles in diverse plant biological processes. In order to decipher the relationship between nbe-miR1919c-5p and the accumulations of tobacco curly shoot virus (TbCSV) and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232422/ https://www.ncbi.nlm.nih.gov/pubmed/32244650 http://dx.doi.org/10.3390/v12040392 |
Sumario: | MicroRNAs (miRNAs) are non-coding but functional RNA molecules of 21–25 nucleotides in length. MiRNAs play significant regulatory roles in diverse plant biological processes. In order to decipher the relationship between nbe-miR1919c-5p and the accumulations of tobacco curly shoot virus (TbCSV) and its betasatellite (TbCSB) DNAs, as well as viral symptom development, we investigated the function of nbe-miR1919c-5p during TbCSV and TbCSB co-infection in plants using a PVX-and a TRV-based short tandem target mimic (STTM) technology. Suppression of nbe-miR1919c-5p expression using these two technologies enhanced TbCSV and TbCSB co-infection-induced leaf curling symptoms in Nicotiana benthamiana plants. Furthermore, suppression of nbe-miR1919c-5p expression enhanced TbCSV and TbCSB DNA accumulations in the infected plants. Our results can advance our knowledge on the nbe-miR1919c-5p function during TbCSV and TbCSB co-infection. |
---|