Cargando…

Phylodynamics Helps to Evaluate the Impact of an HIV Prevention Intervention

Assessment of the long-term population-level effects of HIV interventions is an ongoing public health challenge. Following the implementation of a Transmission Reduction Intervention Project (TRIP) in Odessa, Ukraine, in 2013–2016, we obtained HIV pol gene sequences and used phylogenetics to identif...

Descripción completa

Detalles Bibliográficos
Autores principales: Vasylyeva, Tetyana I., Zarebski, Alexander, Smyrnov, Pavlo, Williams, Leslie D., Korobchuk, Ania, Liulchuk, Mariia, Zadorozhna, Viktoriia, Nikolopoulos, Georgios, Paraskevis, Dimitrios, Schneider, John, Skaathun, Britt, Hatzakis, Angelos, Pybus, Oliver G., Friedman, Samuel R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232463/
https://www.ncbi.nlm.nih.gov/pubmed/32326127
http://dx.doi.org/10.3390/v12040469
_version_ 1783535393190182912
author Vasylyeva, Tetyana I.
Zarebski, Alexander
Smyrnov, Pavlo
Williams, Leslie D.
Korobchuk, Ania
Liulchuk, Mariia
Zadorozhna, Viktoriia
Nikolopoulos, Georgios
Paraskevis, Dimitrios
Schneider, John
Skaathun, Britt
Hatzakis, Angelos
Pybus, Oliver G.
Friedman, Samuel R.
author_facet Vasylyeva, Tetyana I.
Zarebski, Alexander
Smyrnov, Pavlo
Williams, Leslie D.
Korobchuk, Ania
Liulchuk, Mariia
Zadorozhna, Viktoriia
Nikolopoulos, Georgios
Paraskevis, Dimitrios
Schneider, John
Skaathun, Britt
Hatzakis, Angelos
Pybus, Oliver G.
Friedman, Samuel R.
author_sort Vasylyeva, Tetyana I.
collection PubMed
description Assessment of the long-term population-level effects of HIV interventions is an ongoing public health challenge. Following the implementation of a Transmission Reduction Intervention Project (TRIP) in Odessa, Ukraine, in 2013–2016, we obtained HIV pol gene sequences and used phylogenetics to identify HIV transmission clusters. We further applied the birth-death skyline model to the sequences from Odessa (n = 275) and Kyiv (n = 92) in order to estimate changes in the epidemic’s effective reproductive number (R(e)) and rate of becoming uninfectious (δ). We identified 12 transmission clusters in Odessa; phylogenetic clustering was correlated with younger age and higher average viral load at the time of sampling. Estimated R(e) were similar in Odessa and Kyiv before the initiation of TRIP; R(e) started to decline in 2013 and is now below R(e) = 1 in Odessa (R(e) = 0.4, 95%HPD 0.06–0.75), but not in Kyiv (R(e) = 2.3, 95%HPD 0.2–5.4). Similarly, estimates of δ increased in Odessa after the initiation of TRIP. Given that both cities shared the same HIV prevention programs in 2013–2019, apart from TRIP, the observed changes in transmission parameters are likely attributable to the TRIP intervention. We propose that molecular epidemiology analysis can be used as a post-intervention effectiveness assessment tool.
format Online
Article
Text
id pubmed-7232463
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-72324632020-05-22 Phylodynamics Helps to Evaluate the Impact of an HIV Prevention Intervention Vasylyeva, Tetyana I. Zarebski, Alexander Smyrnov, Pavlo Williams, Leslie D. Korobchuk, Ania Liulchuk, Mariia Zadorozhna, Viktoriia Nikolopoulos, Georgios Paraskevis, Dimitrios Schneider, John Skaathun, Britt Hatzakis, Angelos Pybus, Oliver G. Friedman, Samuel R. Viruses Article Assessment of the long-term population-level effects of HIV interventions is an ongoing public health challenge. Following the implementation of a Transmission Reduction Intervention Project (TRIP) in Odessa, Ukraine, in 2013–2016, we obtained HIV pol gene sequences and used phylogenetics to identify HIV transmission clusters. We further applied the birth-death skyline model to the sequences from Odessa (n = 275) and Kyiv (n = 92) in order to estimate changes in the epidemic’s effective reproductive number (R(e)) and rate of becoming uninfectious (δ). We identified 12 transmission clusters in Odessa; phylogenetic clustering was correlated with younger age and higher average viral load at the time of sampling. Estimated R(e) were similar in Odessa and Kyiv before the initiation of TRIP; R(e) started to decline in 2013 and is now below R(e) = 1 in Odessa (R(e) = 0.4, 95%HPD 0.06–0.75), but not in Kyiv (R(e) = 2.3, 95%HPD 0.2–5.4). Similarly, estimates of δ increased in Odessa after the initiation of TRIP. Given that both cities shared the same HIV prevention programs in 2013–2019, apart from TRIP, the observed changes in transmission parameters are likely attributable to the TRIP intervention. We propose that molecular epidemiology analysis can be used as a post-intervention effectiveness assessment tool. MDPI 2020-04-20 /pmc/articles/PMC7232463/ /pubmed/32326127 http://dx.doi.org/10.3390/v12040469 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Vasylyeva, Tetyana I.
Zarebski, Alexander
Smyrnov, Pavlo
Williams, Leslie D.
Korobchuk, Ania
Liulchuk, Mariia
Zadorozhna, Viktoriia
Nikolopoulos, Georgios
Paraskevis, Dimitrios
Schneider, John
Skaathun, Britt
Hatzakis, Angelos
Pybus, Oliver G.
Friedman, Samuel R.
Phylodynamics Helps to Evaluate the Impact of an HIV Prevention Intervention
title Phylodynamics Helps to Evaluate the Impact of an HIV Prevention Intervention
title_full Phylodynamics Helps to Evaluate the Impact of an HIV Prevention Intervention
title_fullStr Phylodynamics Helps to Evaluate the Impact of an HIV Prevention Intervention
title_full_unstemmed Phylodynamics Helps to Evaluate the Impact of an HIV Prevention Intervention
title_short Phylodynamics Helps to Evaluate the Impact of an HIV Prevention Intervention
title_sort phylodynamics helps to evaluate the impact of an hiv prevention intervention
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232463/
https://www.ncbi.nlm.nih.gov/pubmed/32326127
http://dx.doi.org/10.3390/v12040469
work_keys_str_mv AT vasylyevatetyanai phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention
AT zarebskialexander phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention
AT smyrnovpavlo phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention
AT williamsleslied phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention
AT korobchukania phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention
AT liulchukmariia phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention
AT zadorozhnaviktoriia phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention
AT nikolopoulosgeorgios phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention
AT paraskevisdimitrios phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention
AT schneiderjohn phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention
AT skaathunbritt phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention
AT hatzakisangelos phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention
AT pybusoliverg phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention
AT friedmansamuelr phylodynamicshelpstoevaluatetheimpactofanhivpreventionintervention