Cargando…
Impact of halogen chemistry on summertime air quality in coastal and continental Europe: application of the CMAQ model and implications for regulation
Halogen (Cl, Br, and I) chemistry has been reported to influence the formation of secondary air pollutants. Previous studies mostly focused on the impact of chlorine species on air quality over large spatial scales. Very little attention has been paid to the effect of the combined halogen chemistry...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7232855/ https://www.ncbi.nlm.nih.gov/pubmed/32425994 http://dx.doi.org/10.5194/acp-19-15321-2019 |
Sumario: | Halogen (Cl, Br, and I) chemistry has been reported to influence the formation of secondary air pollutants. Previous studies mostly focused on the impact of chlorine species on air quality over large spatial scales. Very little attention has been paid to the effect of the combined halogen chemistry on air quality over Europe and its implications for control policy. In the present study, we apply a widely used regional model, the Community Multiscale Air Quality Modeling System (CMAQ), incorporated with the latest halogen sources and chemistry, to simulate the abundance of halogen species over Europe and to examine the role of halogens in the formation of secondary air pollution. The results suggest that the CMAQ model is able to reproduce the level of O(3), NO(2), and halogen species over Europe. Chlorine chemistry slightly increases the levels of OH, HO(2), NO(3), O(3), and NO(2) and substantially enhances the level of the Cl radical. Combined halogen chemistry induces complex effects on OH (ranging from –0.023 to 0.030 pptv) and HO(2) (in the range of –3.7 to 0.73 pptv), significantly reduces the concentrations of NO(3) (as much as 20 pptv) and O(3) (as much as 10 ppbv), and decreases NO(2) in highly polluted regions (as much as 1.7 ppbv); it increases NO(2) (up to 0.20 ppbv) in other areas. The maximum effects of halogen chemistry occur over oceanic and coastal regions, but some noticeable impacts also occur over continental Europe. Halogen chemistry affects the number of days exceeding the European Union target threshold for the protection of human beings and vegetation from ambient O(3). In light of the significant impact of halogen chemistry on air quality, we recommend that halogen chemistry be considered for inclusion in air quality policy assessments, particularly in coastal cities. |
---|