Cargando…
Longitudinal Assessment of COVID-19 Using a Deep Learning–based Quantitative CT Pipeline: Illustration of Two Cases
Autores principales: | Cao, Yukun, Xu, Zhanwei, Feng, Jianjiang, Jin, Cheng, Han, Xiaoyu, Wu, Hanping, Shi, Heshui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radiological Society of North America
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233432/ https://www.ncbi.nlm.nih.gov/pubmed/33778563 http://dx.doi.org/10.1148/ryct.2020200082 |
Ejemplares similares
-
Comparison of deep learning, radiomics and subjective assessment of chest CT findings in SARS-CoV-2 pneumonia
por: Arru, Chiara, et al.
Publicado: (2021) -
Quantitative assessment of lung involvement on chest CT at admission: Impact on hypoxia and outcome in COVID-19 patients
por: Esposito, Antonio, et al.
Publicado: (2021) -
Early prediction of severity in coronavirus disease (COVID-19) using quantitative CT imaging
por: Li, Kunwei, et al.
Publicado: (2021) -
Longitudinal CT Findings in COVID-19 Pneumonia: Case Presenting Organizing Pneumonia Pattern
por: Wu, Yan, et al.
Publicado: (2020) -
Automated quantitative thin slice volumetric low dose CT analysis predicts disease severity in COVID-19 patients
por: Stoleriu, Mircea Gabriel, et al.
Publicado: (2021)