Cargando…
Extension of Coronavirus Disease 2019 on Chest CT and Implications for Chest Radiographic Interpretation
PURPOSE: To study the extent of pulmonary involvement in coronavirus 19 (COVID-19) with quantitative CT and to assess the impact of disease burden on opacity visibility on chest radiographs. MATERIALS AND METHODS: This retrospective study included 20 pairs of CT scans and same-day chest radiographs...
Autores principales: | Choi, Hyewon, Qi, Xiaolong, Yoon, Soon Ho, Park, Sang Joon, Lee, Kyung Hee, Kim, Jin Yong, Lee, Young Kyung, Ko, Hongseok, Kim, Ki Hwan, Park, Chang Min, Kim, Yun-Hyeon, Lei, Junqiang, Hong, Jung Hee, Kim, Hyungjin, Hwang, Eui Jin, Yoo, Seung Jin, Nam, Ju Gang, Lee, Chang Hyun, Goo, Jin Mo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radiological Society of North America
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233433/ https://www.ncbi.nlm.nih.gov/pubmed/33778565 http://dx.doi.org/10.1148/ryct.2020200107 |
Ejemplares similares
-
Erratum: Extension of Coronavirus Disease 2019 (COVID-19) on Chest CT and Implications for Chest Radiograph Interpretation
por: Choi, Hyewon, et al.
Publicado: (2020) -
Implementation of a Deep Learning-Based Computer-Aided Detection System for the Interpretation of Chest Radiographs in Patients Suspected for COVID-19
por: Hwang, Eui Jin, et al.
Publicado: (2020) -
Chest Radiographic and CT Findings of the 2019 Novel Coronavirus Disease (COVID-19): Analysis of Nine Patients Treated in Korea
por: Yoon, Soon Ho, et al.
Publicado: (2020) -
Computer-Aided Detection of Malignant Lung Nodules on Chest Radiographs: Effect on Observers' Performance
por: Lee, Kyung Hee, et al.
Publicado: (2012) -
Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs
por: Nam, Ju Gang, et al.
Publicado: (2021)