Cargando…
Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta
KEY MESSAGE: Differences in the composition and the structural organisation of the extracellular matrix correlate with the morphogenic competence of the callus tissue that originated from the isolated endosperm of kiwifruit. ABSTRACT: The chemical composition and structural organisation of the extra...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235053/ https://www.ncbi.nlm.nih.gov/pubmed/32232559 http://dx.doi.org/10.1007/s00299-020-02530-2 |
_version_ | 1783535893511929856 |
---|---|
author | Popielarska-Konieczna, Marzena Sala, Katarzyna Abdullah, Mohib Tuleja, Monika Kurczyńska, Ewa |
author_facet | Popielarska-Konieczna, Marzena Sala, Katarzyna Abdullah, Mohib Tuleja, Monika Kurczyńska, Ewa |
author_sort | Popielarska-Konieczna, Marzena |
collection | PubMed |
description | KEY MESSAGE: Differences in the composition and the structural organisation of the extracellular matrix correlate with the morphogenic competence of the callus tissue that originated from the isolated endosperm of kiwifruit. ABSTRACT: The chemical composition and structural organisation of the extracellular matrix, including the cell wall and the layer on its surface, may correspond with the morphogenic competence of a tissue. In the presented study, this relationship was found in the callus tissue that had been differentiated from the isolated endosperm of the kiwiberry, Actinidia arguta. The experimental system was based on callus samples of exactly the same age that had originated from an isolated endosperm but were cultured under controlled conditions promoting either an organogenic or a non-organogenic pathway. The analyses which were performed using bright field, fluorescence and scanning electron microscopy techniques showed significant differences between the two types of calli. The organogenic tissue was compact and the outer walls of the peripheral cells were covered with granular structures. The non-organogenic tissue was composed of loosely attached cells, which were connected via a net-like structure. The extracellular matrices from both the non- and organogenic tissues were abundant in pectic homogalacturonan and extensins (LM19, LM20, JIM11, JIM12 and JIM20 epitopes), but the epitopes that are characteristic for rhamnogalacturonan I (LM5 and LM6), hemicellulose (LM25) and the arabinogalactan protein (LM2) were detected only in the non-organogenic callus. Moreover, we report the epitopes, which presence is characteristic for the Actinidia endosperm (LM21 and LM25, heteromannan and xyloglucan) and for the endosperm-derived cells that undergo dedifferentiation (loss of LM21 and LM25; appearance or increase in the content of LM5, LM6, LM19, JIM11, JIM12, JIM20, JIM8 and JIM16 epitopes). |
format | Online Article Text |
id | pubmed-7235053 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-72350532020-05-20 Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta Popielarska-Konieczna, Marzena Sala, Katarzyna Abdullah, Mohib Tuleja, Monika Kurczyńska, Ewa Plant Cell Rep Original Article KEY MESSAGE: Differences in the composition and the structural organisation of the extracellular matrix correlate with the morphogenic competence of the callus tissue that originated from the isolated endosperm of kiwifruit. ABSTRACT: The chemical composition and structural organisation of the extracellular matrix, including the cell wall and the layer on its surface, may correspond with the morphogenic competence of a tissue. In the presented study, this relationship was found in the callus tissue that had been differentiated from the isolated endosperm of the kiwiberry, Actinidia arguta. The experimental system was based on callus samples of exactly the same age that had originated from an isolated endosperm but were cultured under controlled conditions promoting either an organogenic or a non-organogenic pathway. The analyses which were performed using bright field, fluorescence and scanning electron microscopy techniques showed significant differences between the two types of calli. The organogenic tissue was compact and the outer walls of the peripheral cells were covered with granular structures. The non-organogenic tissue was composed of loosely attached cells, which were connected via a net-like structure. The extracellular matrices from both the non- and organogenic tissues were abundant in pectic homogalacturonan and extensins (LM19, LM20, JIM11, JIM12 and JIM20 epitopes), but the epitopes that are characteristic for rhamnogalacturonan I (LM5 and LM6), hemicellulose (LM25) and the arabinogalactan protein (LM2) were detected only in the non-organogenic callus. Moreover, we report the epitopes, which presence is characteristic for the Actinidia endosperm (LM21 and LM25, heteromannan and xyloglucan) and for the endosperm-derived cells that undergo dedifferentiation (loss of LM21 and LM25; appearance or increase in the content of LM5, LM6, LM19, JIM11, JIM12, JIM20, JIM8 and JIM16 epitopes). Springer Berlin Heidelberg 2020-03-30 2020 /pmc/articles/PMC7235053/ /pubmed/32232559 http://dx.doi.org/10.1007/s00299-020-02530-2 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Original Article Popielarska-Konieczna, Marzena Sala, Katarzyna Abdullah, Mohib Tuleja, Monika Kurczyńska, Ewa Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta |
title | Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta |
title_full | Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta |
title_fullStr | Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta |
title_full_unstemmed | Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta |
title_short | Extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of Actinidia arguta |
title_sort | extracellular matrix and wall composition are diverse in the organogenic and non-organogenic calli of actinidia arguta |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235053/ https://www.ncbi.nlm.nih.gov/pubmed/32232559 http://dx.doi.org/10.1007/s00299-020-02530-2 |
work_keys_str_mv | AT popielarskakoniecznamarzena extracellularmatrixandwallcompositionarediverseintheorganogenicandnonorganogeniccalliofactinidiaarguta AT salakatarzyna extracellularmatrixandwallcompositionarediverseintheorganogenicandnonorganogeniccalliofactinidiaarguta AT abdullahmohib extracellularmatrixandwallcompositionarediverseintheorganogenicandnonorganogeniccalliofactinidiaarguta AT tulejamonika extracellularmatrixandwallcompositionarediverseintheorganogenicandnonorganogeniccalliofactinidiaarguta AT kurczynskaewa extracellularmatrixandwallcompositionarediverseintheorganogenicandnonorganogeniccalliofactinidiaarguta |