Cargando…
Generative Adversarial Networks and Its Applications in Biomedical Informatics
The basic Generative Adversarial Networks (GAN) model is composed of the input vector, generator, and discriminator. Among them, the generator and discriminator are implicit function expressions, usually implemented by deep neural networks. GAN can learn the generative model of any data distribution...
Autores principales: | Lan, Lan, You, Lei, Zhang, Zeyang, Fan, Zhiwei, Zhao, Weiling, Zeng, Nianyin, Chen, Yidong, Zhou, Xiaobo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235323/ https://www.ncbi.nlm.nih.gov/pubmed/32478029 http://dx.doi.org/10.3389/fpubh.2020.00164 |
Ejemplares similares
-
scIGANs: single-cell RNA-seq imputation using generative adversarial networks
por: Xu, Yungang, et al.
Publicado: (2020) -
Causal Discovery in Radiographic Markers of Knee Osteoarthritis and Prediction for Knee Osteoarthritis Severity With Attention–Long Short-Term Memory
por: Wang, Yanfei, et al.
Publicado: (2020) -
Advances in biomedical informatics
por: Holmes, Dawn E, et al.
Publicado: (2017) -
Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey
por: Iqbal, Ahmed, et al.
Publicado: (2022) -
Review of Generative Adversarial Networks in mono- and cross-modal biomedical image registration
por: Han, Tingting, et al.
Publicado: (2022)