Cargando…
Non-uniqueness Phenomenon of Object Representation in Modeling IT Cortex by Deep Convolutional Neural Network (DCNN)
Recently DCNN (Deep Convolutional Neural Network) has been advocated as a general and promising modeling approach for neural object representation in primate inferotemporal cortex. In this work, we show that some inherent non-uniqueness problem exists in the DCNN-based modeling of image object repre...
Autores principales: | Dong, Qiulei, Liu, Bo, Hu, Zhanyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235366/ https://www.ncbi.nlm.nih.gov/pubmed/32477087 http://dx.doi.org/10.3389/fncom.2020.00035 |
Ejemplares similares
-
Commentary: Using goal-driven deep learning models to understand sensory cortex
por: Dong, Qiulei, et al.
Publicado: (2018) -
Microscopic nuclei classification, segmentation, and detection with improved deep convolutional neural networks (DCNN)
por: Alom, Zahangir, et al.
Publicado: (2022) -
Comparison of IT Neural Response Statistics with Simulations
por: Dong, Qiulei, et al.
Publicado: (2017) -
Orthogonal Representations of Object Shape and Category in Deep Convolutional Neural Networks and Human Visual Cortex
por: Zeman, Astrid A., et al.
Publicado: (2020) -
Hierarchical Sparse Coding of Objects in Deep Convolutional Neural Networks
por: Liu, Xingyu, et al.
Publicado: (2020)