Cargando…
Mixed-Precision Deep Learning Based on Computational Memory
Deep neural networks (DNNs) have revolutionized the field of artificial intelligence and have achieved unprecedented success in cognitive tasks such as image and speech recognition. Training of large DNNs, however, is computationally intensive and this has motivated the search for novel computing ar...
Autores principales: | Nandakumar, S. R., Le Gallo, Manuel, Piveteau, Christophe, Joshi, Vinay, Mariani, Giovanni, Boybat, Irem, Karunaratne, Geethan, Khaddam-Aljameh, Riduan, Egger, Urs, Petropoulos, Anastasios, Antonakopoulos, Theodore, Rajendran, Bipin, Sebastian, Abu, Eleftheriou, Evangelos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235420/ https://www.ncbi.nlm.nih.gov/pubmed/32477047 http://dx.doi.org/10.3389/fnins.2020.00406 |
Ejemplares similares
-
Accurate deep neural network inference using computational phase-change memory
por: Joshi, Vinay, et al.
Publicado: (2020) -
Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses
por: Nandakumar, S. R., et al.
Publicado: (2020) -
Neuromorphic computing with multi-memristive synapses
por: Boybat, Irem, et al.
Publicado: (2018) -
Robust high-dimensional memory-augmented neural networks
por: Karunaratne, Geethan, et al.
Publicado: (2021) -
Editorial: Hardware for artificial intelligence
por: Boybat, Irem, et al.
Publicado: (2022)