Cargando…
Synaptic Plasticity Dynamics for Deep Continuous Local Learning (DECOLLE)
A growing body of work underlines striking similarities between biological neural networks and recurrent, binary neural networks. A relatively smaller body of work, however, addresses the similarities between learning dynamics employed in deep artificial neural networks and synaptic plasticity in sp...
Autores principales: | Kaiser, Jacques, Mostafa, Hesham, Neftci, Emre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235446/ https://www.ncbi.nlm.nih.gov/pubmed/32477050 http://dx.doi.org/10.3389/fnins.2020.00424 |
Ejemplares similares
-
Memory-Efficient Synaptic Connectivity for Spike-Timing- Dependent Plasticity
por: Pedroni, Bruno U., et al.
Publicado: (2019) -
Embodied Synaptic Plasticity With Online Reinforcement Learning
por: Kaiser, Jacques, et al.
Publicado: (2019) -
A 22-pJ/spike 73-Mspikes/s 130k-compartment neural array transceiver with conductance-based synaptic and membrane dynamics
por: Park, Jongkil, et al.
Publicado: (2023) -
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines
por: Neftci, Emre O., et al.
Publicado: (2017) -
Deep Supervised Learning Using Local Errors
por: Mostafa, Hesham, et al.
Publicado: (2018)