Cargando…
Multi-Level Representation Learning for Chinese Medical Entity Recognition: Model Development and Validation
BACKGROUND: Medical entity recognition is a key technology that supports the development of smart medicine. Existing methods on English medical entity recognition have undergone great development, but their progress in the Chinese language has been slow. Because of limitations due to the complexity...
Autores principales: | Zhang, Zhichang, Zhu, Lin, Yu, Peilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235813/ https://www.ncbi.nlm.nih.gov/pubmed/32364514 http://dx.doi.org/10.2196/17637 |
Ejemplares similares
-
Chinese medical entity recognition based on the dual-branch TENER model
por: Peng, Hui, et al.
Publicado: (2023) -
Learning adaptive representations for entity recognition in the biomedical domain
por: Lauriola, Ivano, et al.
Publicado: (2021) -
Chinese Clinical Named Entity Recognition in Electronic Medical Records: Development of a Lattice Long Short-Term Memory Model With Contextualized Character Representations
por: Li, Yongbin, et al.
Publicado: (2020) -
A Fine-Tuned Bidirectional Encoder Representations From Transformers Model for Food Named-Entity Recognition: Algorithm Development and Validation
por: Stojanov, Riste, et al.
Publicado: (2021) -
Multi-task learning for Chinese clinical named entity recognition with external knowledge
por: Cheng, Ming, et al.
Publicado: (2021)