Cargando…
Uncovering the prognostic gene signatures for the improvement of risk stratification in cancers by using deep learning algorithm coupled with wavelet transform
BACKGROUND: The aim of gene expression-based clinical modelling in tumorigenesis is not only to accurately predict the clinical endpoints, but also to reveal the genome characteristics for downstream analysis for the purpose of understanding the mechanisms of cancers. Most of the conventional machin...
Autores principales: | Zhao, Yiru, Zhou, Yifan, Liu, Yuan, Hao, Yinyi, Li, Menglong, Pu, Xuemei, Li, Chuan, Wen, Zhining |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7236453/ https://www.ncbi.nlm.nih.gov/pubmed/32429941 http://dx.doi.org/10.1186/s12859-020-03544-z |
Ejemplares similares
-
Comparative Analysis for the Performance of Variant Calling Pipelines on Detecting the de novo Mutations in Humans
por: Liang, Yu, et al.
Publicado: (2019) -
Improving Model Performance on the Stratification of Breast Cancer Patients by Integrating Multiscale Genomic Features
por: Hao, Yingyi, et al.
Publicado: (2020) -
Improving power in genetic-association studies via wavelet transformation
por: Jiang, Renfang, et al.
Publicado: (2009) -
OSCILLATOR: A system for analysis of diurnal leaf growth using infrared photography combined with wavelet transformation
por: Bours, Ralph, et al.
Publicado: (2012) -
Uncovering correlated variability in epigenomic datasets using the Karhunen-Loeve transform
por: Madrigal, Pedro, et al.
Publicado: (2015)