Cargando…
Enhancing SVM for survival data using local invariances and weighting
BACKGROUND: The necessity to analyze medium-throughput data in epidemiological studies with small sample size, particularly when studying biomedical data may hinder the use of classical statistical methods. Support vector machines (SVM) models can be successfully applied in this setting because they...
Autores principales: | Sanz, Hector, Reverter, Ferran, Valim, Clarissa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7236493/ https://www.ncbi.nlm.nih.gov/pubmed/32429884 http://dx.doi.org/10.1186/s12859-020-3481-2 |
Ejemplares similares
-
Correction to: Enhancing SVM for survival data using local invariances and weighting
por: Sanz, Hector, et al.
Publicado: (2020) -
SVM-RFE: selection and visualization of the most relevant features through non-linear kernels
por: Sanz, Hector, et al.
Publicado: (2018) -
An SVM-based system for predicting protein subnuclear localizations
por: Lei, Zhengdeng, et al.
Publicado: (2005) -
Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data
por: Zhang, Xuegong, et al.
Publicado: (2006) -
Disorder recognition in clinical texts using multi-label structured SVM
por: Lin, Wutao, et al.
Publicado: (2017)