Cargando…
Quantitative Proteomics Using Formalin-fixed, Paraffin-embedded Biopsy Tissues in Inflammatory Disease
BACKGROUND: Investigations in human disease pathogenesis have been hampered due to paucity of access to fresh-frozen tissues (FFT) for use in global, data-driven methodologies. As an alternative, formalin-fixed, paraffin-embedded (FFPE) tissues are readily available in pathology banks. However, the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7236785/ https://www.ncbi.nlm.nih.gov/pubmed/32431480 http://dx.doi.org/10.35248/0974-276X.12.19.503 |
_version_ | 1783536212646035456 |
---|---|
author | Amarnani, Abhimanyu Capri, Joseph R. Souda, Puneet Elashoff, David A. Lopez, Ivan A. Whitelegge, Julian P. Singh, Ram R. |
author_facet | Amarnani, Abhimanyu Capri, Joseph R. Souda, Puneet Elashoff, David A. Lopez, Ivan A. Whitelegge, Julian P. Singh, Ram R. |
author_sort | Amarnani, Abhimanyu |
collection | PubMed |
description | BACKGROUND: Investigations in human disease pathogenesis have been hampered due to paucity of access to fresh-frozen tissues (FFT) for use in global, data-driven methodologies. As an alternative, formalin-fixed, paraffin-embedded (FFPE) tissues are readily available in pathology banks. However, the use of formalin for fixation can lead to the loss of proteins that appear during inflammation, thus introducing an inherent sample bias. To address this, we compared FF and FFPE tissue proteomics to determine whether FFPE-tissue can be used effectively in inflammatory diseases. METHODS: Adjacent kidney slices from lupus nephritic mice were processed as FFPE or FFTs. Their tissue lysates were run together using proteomics workflow involving filter-aided sample preparation, in-solution dimethyl isotope labeling, StageTip fractionation, and nano-LC MS/MS through an Orbitrap XL MS. RESULTS: We report a >97% concordance in protein identification between adjacent FFPE and FFTs in murine lupus nephritic kidneys. Specifically, proteins representing pathways, namely, ‘systemic lupus erythematosus’, ‘interferon-α’, ‘TGF-β’, and ‘extracellular matrix’, were reproducibly quantified between FFPE and FFTs. However, 12%−29% proteins were quantified differently in FFPE compared to FFTs, but the differences were consistent across experiments. In particular, certain proteins represented in pathways, including ‘inflammatory response’ and ‘innate immune system’ were quantified less in FFPE than in FFTs. In a pilot study of human FFPE tissues, we identified proteins relevant to pathogenesis in lupus nephritic kidney biopsies compared to control kidneys. CONCLUSION: This is the first report of lupus nephritis kidney proteomics using FFPE tissue. We concluded that archived FFPE tissues can be reliably used for proteomic analyses in inflammatory diseases, with a caveat that certain proteins related to immunity and inflammation may be quantified less in FFPE than in FFTs. |
format | Online Article Text |
id | pubmed-7236785 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-72367852020-05-19 Quantitative Proteomics Using Formalin-fixed, Paraffin-embedded Biopsy Tissues in Inflammatory Disease Amarnani, Abhimanyu Capri, Joseph R. Souda, Puneet Elashoff, David A. Lopez, Ivan A. Whitelegge, Julian P. Singh, Ram R. J Proteomics Bioinform Article BACKGROUND: Investigations in human disease pathogenesis have been hampered due to paucity of access to fresh-frozen tissues (FFT) for use in global, data-driven methodologies. As an alternative, formalin-fixed, paraffin-embedded (FFPE) tissues are readily available in pathology banks. However, the use of formalin for fixation can lead to the loss of proteins that appear during inflammation, thus introducing an inherent sample bias. To address this, we compared FF and FFPE tissue proteomics to determine whether FFPE-tissue can be used effectively in inflammatory diseases. METHODS: Adjacent kidney slices from lupus nephritic mice were processed as FFPE or FFTs. Their tissue lysates were run together using proteomics workflow involving filter-aided sample preparation, in-solution dimethyl isotope labeling, StageTip fractionation, and nano-LC MS/MS through an Orbitrap XL MS. RESULTS: We report a >97% concordance in protein identification between adjacent FFPE and FFTs in murine lupus nephritic kidneys. Specifically, proteins representing pathways, namely, ‘systemic lupus erythematosus’, ‘interferon-α’, ‘TGF-β’, and ‘extracellular matrix’, were reproducibly quantified between FFPE and FFTs. However, 12%−29% proteins were quantified differently in FFPE compared to FFTs, but the differences were consistent across experiments. In particular, certain proteins represented in pathways, including ‘inflammatory response’ and ‘innate immune system’ were quantified less in FFPE than in FFTs. In a pilot study of human FFPE tissues, we identified proteins relevant to pathogenesis in lupus nephritic kidney biopsies compared to control kidneys. CONCLUSION: This is the first report of lupus nephritis kidney proteomics using FFPE tissue. We concluded that archived FFPE tissues can be reliably used for proteomic analyses in inflammatory diseases, with a caveat that certain proteins related to immunity and inflammation may be quantified less in FFPE than in FFTs. 2019-10-03 2019 /pmc/articles/PMC7236785/ /pubmed/32431480 http://dx.doi.org/10.35248/0974-276X.12.19.503 Text en http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Article Amarnani, Abhimanyu Capri, Joseph R. Souda, Puneet Elashoff, David A. Lopez, Ivan A. Whitelegge, Julian P. Singh, Ram R. Quantitative Proteomics Using Formalin-fixed, Paraffin-embedded Biopsy Tissues in Inflammatory Disease |
title | Quantitative Proteomics Using Formalin-fixed, Paraffin-embedded Biopsy Tissues in Inflammatory Disease |
title_full | Quantitative Proteomics Using Formalin-fixed, Paraffin-embedded Biopsy Tissues in Inflammatory Disease |
title_fullStr | Quantitative Proteomics Using Formalin-fixed, Paraffin-embedded Biopsy Tissues in Inflammatory Disease |
title_full_unstemmed | Quantitative Proteomics Using Formalin-fixed, Paraffin-embedded Biopsy Tissues in Inflammatory Disease |
title_short | Quantitative Proteomics Using Formalin-fixed, Paraffin-embedded Biopsy Tissues in Inflammatory Disease |
title_sort | quantitative proteomics using formalin-fixed, paraffin-embedded biopsy tissues in inflammatory disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7236785/ https://www.ncbi.nlm.nih.gov/pubmed/32431480 http://dx.doi.org/10.35248/0974-276X.12.19.503 |
work_keys_str_mv | AT amarnaniabhimanyu quantitativeproteomicsusingformalinfixedparaffinembeddedbiopsytissuesininflammatorydisease AT caprijosephr quantitativeproteomicsusingformalinfixedparaffinembeddedbiopsytissuesininflammatorydisease AT soudapuneet quantitativeproteomicsusingformalinfixedparaffinembeddedbiopsytissuesininflammatorydisease AT elashoffdavida quantitativeproteomicsusingformalinfixedparaffinembeddedbiopsytissuesininflammatorydisease AT lopezivana quantitativeproteomicsusingformalinfixedparaffinembeddedbiopsytissuesininflammatorydisease AT whiteleggejulianp quantitativeproteomicsusingformalinfixedparaffinembeddedbiopsytissuesininflammatorydisease AT singhramr quantitativeproteomicsusingformalinfixedparaffinembeddedbiopsytissuesininflammatorydisease |