Cargando…
Power analysis for RNA-Seq differential expression studies using generalized linear mixed effects models
BACKGROUND: Power analysis becomes an inevitable step in experimental design of current biomedical research. Complex designs allowing diverse correlation structures are commonly used in RNA-Seq experiments. However, the field currently lacks statistical methods to calculate sample size and estimate...
Autores principales: | Yu, Lianbo, Fernandez, Soledad, Brock, Guy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7236949/ https://www.ncbi.nlm.nih.gov/pubmed/32429934 http://dx.doi.org/10.1186/s12859-020-3541-7 |
Ejemplares similares
-
Power analysis for RNA-Seq differential expression studies
por: Yu, Lianbo, et al.
Publicado: (2017) -
Fully moderated t-statistic in linear modeling of mixed effects for differential expression analysis
por: Yu, Lianbo, et al.
Publicado: (2019) -
A general approach to mixed effects modeling of residual variances in generalized linear mixed models
por: Kizilkaya, Kadir, et al.
Publicado: (2005) -
On Differential Gene Expression Using RNA-Seq Data
por: Lee, Juhee, et al.
Publicado: (2011) -
BALLI: Bartlett-adjusted likelihood-based linear model approach for identifying differentially expressed genes with RNA-seq data
por: Park, Kyungtaek, et al.
Publicado: (2019)