Cargando…
Randomly connected networks generate emergent selectivity and predict decoding properties of large populations of neurons
Modern recording methods enable sampling of thousands of neurons during the performance of behavioral tasks, raising the question of how recorded activity relates to theoretical models. In the context of decision making, functional connectivity between choice-selective cortical neurons was recently...
Autores principales: | Sederberg, Audrey, Nemenman, Ilya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237045/ https://www.ncbi.nlm.nih.gov/pubmed/32379751 http://dx.doi.org/10.1371/journal.pcbi.1007875 |
Ejemplares similares
-
Neural criticality from effective latent variables
por: Morrell, Mia, et al.
Publicado: (2023) -
Unsupervised Bayesian Ising Approximation for decoding neural activity and other biological dictionaries
por: Hernández, Damián G, et al.
Publicado: (2022) -
Automatic Generation of Connectivity for Large-Scale Neuronal Network Models through Structural Plasticity
por: Diaz-Pier, Sandra, et al.
Publicado: (2016) -
Simple biochemical networks allow accurate sensing of multiple ligands with a single receptor
por: Singh, Vijay, et al.
Publicado: (2017) -
Constrained brain volume in an efficient coding model explains the fraction of excitatory and inhibitory neurons in sensory cortices
por: Alreja, Arish, et al.
Publicado: (2022)