Cargando…
Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks
SARS-CoV-2 (COVID-19) is a new Coronavirus, with first reported human infections in late 2019. COVID-19 has been officially declared as a universal pandemic by the World Health Organization (WHO). The epidemiological characteristics of COVID-2019 have not been completely understood yet. More than 20...
Autores principales: | Saba, Amal I., Elsheikh, Ammar H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Institution of Chemical Engineers. Published by Elsevier B.V.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237379/ https://www.ncbi.nlm.nih.gov/pubmed/32501368 http://dx.doi.org/10.1016/j.psep.2020.05.029 |
Ejemplares similares
-
Artificial Intelligence for Forecasting the Prevalence of COVID-19 Pandemic: An Overview
por: Elsheikh, Ammar H., et al.
Publicado: (2021) -
Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting
por: Men, Zhongxian, et al.
Publicado: (2014) -
Efficient artificial intelligence forecasting models for COVID-19 outbreak in Russia and Brazil
por: Al-qaness, Mohammed A.A., et al.
Publicado: (2021) -
COVID-19 prevalence forecasting using Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN): Case of Turkey
por: Toğa, Gülhan, et al.
Publicado: (2021) -
Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia
por: Elsheikh, Ammar H., et al.
Publicado: (2021)