Cargando…
A Framework for Modeling Flood Depth Using a Hybrid of Hydraulics and Machine Learning
Solving river engineering problems typically requires river flow characterization, including the prediction of flow depth, flow velocity, and flood extent. Hydraulic models use governing equations of the flow in motion (conservation of mass and momentum principles) to predict the flow characteristic...
Autores principales: | Hosseiny, Hossein, Nazari, Foad, Smith, Virginia, Nataraj, C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237697/ https://www.ncbi.nlm.nih.gov/pubmed/32427970 http://dx.doi.org/10.1038/s41598-020-65232-5 |
Ejemplares similares
-
Unraveling the complexities of urban fluvial flood hydraulics through AI
por: Mehedi, Md Abdullah Al, et al.
Publicado: (2022) -
Nonlinear dynamic analysis of an epidemiological model for COVID-19 including public behavior and government action
por: Kwuimy, C. A. K., et al.
Publicado: (2020) -
Flood Realities, Perceptions and the Depth of Divisions on Climate
por: Hamilton, Lawrence C, et al.
Publicado: (2016) -
Floodwater Depth Causes Different Physiological Responses During Post-flooding in Willows
por: Mozo, Irina, et al.
Publicado: (2021) -
Hydraulic control of machine tools
por: Khaimovich, E M
Publicado: (1965)