Cargando…
Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides
The quasimetallic 1T′ phase 2D transition‐metal dichalcogenides (TMDs) consist of 1D zigzag metal chains stacked periodically along a single axis. This gives rise to its prominent physical properties which promises the onset of novel physical phenomena and applications. Here, the in‐plane electronic...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237846/ https://www.ncbi.nlm.nih.gov/pubmed/32440469 http://dx.doi.org/10.1002/advs.201902726 |
_version_ | 1783536408559878144 |
---|---|
author | Tang, Chi Sin Yin, Xinmao Yang, Ming Wu, Di Wu, Jing Wong, Lai Mun Li, Changjian Tong, Shi Wun Chang, Yung‐Huang Ouyang, Fangping Feng, Yuan Ping Wang, Shi Jie Chi, Dongzhi Breese, Mark B. H. Zhang, Wenjing Rusydi, Andrivo Wee, Andrew T. S. |
author_facet | Tang, Chi Sin Yin, Xinmao Yang, Ming Wu, Di Wu, Jing Wong, Lai Mun Li, Changjian Tong, Shi Wun Chang, Yung‐Huang Ouyang, Fangping Feng, Yuan Ping Wang, Shi Jie Chi, Dongzhi Breese, Mark B. H. Zhang, Wenjing Rusydi, Andrivo Wee, Andrew T. S. |
author_sort | Tang, Chi Sin |
collection | PubMed |
description | The quasimetallic 1T′ phase 2D transition‐metal dichalcogenides (TMDs) consist of 1D zigzag metal chains stacked periodically along a single axis. This gives rise to its prominent physical properties which promises the onset of novel physical phenomena and applications. Here, the in‐plane electronic correlations are explored, and new mid‐infrared plasmon excitations in 1T′ phase monolayer WSe(2) and MoS(2) are observed using optical spectroscopies. Based on an extensive first‐principles study which analyzes the charge dynamics across multiple axes of the atomic‐layered systems, the collective charge excitations are found to disperse only along the direction perpendicular to the chains. Further analysis reveals that the interchain long‐range coupling is responsible for the coherent 1D charge dynamics and the spin–orbit coupling affects the plasmon frequency. Detailed investigation of these charge collective modes in 2D‐chained systems offers opportunities for novel device applications and has implications for the underlying mechanism that governs superconductivity in 2D TMD systems. |
format | Online Article Text |
id | pubmed-7237846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72378462020-05-21 Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides Tang, Chi Sin Yin, Xinmao Yang, Ming Wu, Di Wu, Jing Wong, Lai Mun Li, Changjian Tong, Shi Wun Chang, Yung‐Huang Ouyang, Fangping Feng, Yuan Ping Wang, Shi Jie Chi, Dongzhi Breese, Mark B. H. Zhang, Wenjing Rusydi, Andrivo Wee, Andrew T. S. Adv Sci (Weinh) Communications The quasimetallic 1T′ phase 2D transition‐metal dichalcogenides (TMDs) consist of 1D zigzag metal chains stacked periodically along a single axis. This gives rise to its prominent physical properties which promises the onset of novel physical phenomena and applications. Here, the in‐plane electronic correlations are explored, and new mid‐infrared plasmon excitations in 1T′ phase monolayer WSe(2) and MoS(2) are observed using optical spectroscopies. Based on an extensive first‐principles study which analyzes the charge dynamics across multiple axes of the atomic‐layered systems, the collective charge excitations are found to disperse only along the direction perpendicular to the chains. Further analysis reveals that the interchain long‐range coupling is responsible for the coherent 1D charge dynamics and the spin–orbit coupling affects the plasmon frequency. Detailed investigation of these charge collective modes in 2D‐chained systems offers opportunities for novel device applications and has implications for the underlying mechanism that governs superconductivity in 2D TMD systems. John Wiley and Sons Inc. 2020-04-16 /pmc/articles/PMC7237846/ /pubmed/32440469 http://dx.doi.org/10.1002/advs.201902726 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Tang, Chi Sin Yin, Xinmao Yang, Ming Wu, Di Wu, Jing Wong, Lai Mun Li, Changjian Tong, Shi Wun Chang, Yung‐Huang Ouyang, Fangping Feng, Yuan Ping Wang, Shi Jie Chi, Dongzhi Breese, Mark B. H. Zhang, Wenjing Rusydi, Andrivo Wee, Andrew T. S. Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides |
title | Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides |
title_full | Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides |
title_fullStr | Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides |
title_full_unstemmed | Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides |
title_short | Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides |
title_sort | anisotropic collective charge excitations in quasimetallic 2d transition‐metal dichalcogenides |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237846/ https://www.ncbi.nlm.nih.gov/pubmed/32440469 http://dx.doi.org/10.1002/advs.201902726 |
work_keys_str_mv | AT tangchisin anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT yinxinmao anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT yangming anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT wudi anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT wujing anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT wonglaimun anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT lichangjian anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT tongshiwun anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT changyunghuang anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT ouyangfangping anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT fengyuanping anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT wangshijie anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT chidongzhi anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT breesemarkbh anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT zhangwenjing anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT rusydiandrivo anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides AT weeandrewts anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides |