Cargando…

Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides

The quasimetallic 1T′ phase 2D transition‐metal dichalcogenides (TMDs) consist of 1D zigzag metal chains stacked periodically along a single axis. This gives rise to its prominent physical properties which promises the onset of novel physical phenomena and applications. Here, the in‐plane electronic...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Chi Sin, Yin, Xinmao, Yang, Ming, Wu, Di, Wu, Jing, Wong, Lai Mun, Li, Changjian, Tong, Shi Wun, Chang, Yung‐Huang, Ouyang, Fangping, Feng, Yuan Ping, Wang, Shi Jie, Chi, Dongzhi, Breese, Mark B. H., Zhang, Wenjing, Rusydi, Andrivo, Wee, Andrew T. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237846/
https://www.ncbi.nlm.nih.gov/pubmed/32440469
http://dx.doi.org/10.1002/advs.201902726
_version_ 1783536408559878144
author Tang, Chi Sin
Yin, Xinmao
Yang, Ming
Wu, Di
Wu, Jing
Wong, Lai Mun
Li, Changjian
Tong, Shi Wun
Chang, Yung‐Huang
Ouyang, Fangping
Feng, Yuan Ping
Wang, Shi Jie
Chi, Dongzhi
Breese, Mark B. H.
Zhang, Wenjing
Rusydi, Andrivo
Wee, Andrew T. S.
author_facet Tang, Chi Sin
Yin, Xinmao
Yang, Ming
Wu, Di
Wu, Jing
Wong, Lai Mun
Li, Changjian
Tong, Shi Wun
Chang, Yung‐Huang
Ouyang, Fangping
Feng, Yuan Ping
Wang, Shi Jie
Chi, Dongzhi
Breese, Mark B. H.
Zhang, Wenjing
Rusydi, Andrivo
Wee, Andrew T. S.
author_sort Tang, Chi Sin
collection PubMed
description The quasimetallic 1T′ phase 2D transition‐metal dichalcogenides (TMDs) consist of 1D zigzag metal chains stacked periodically along a single axis. This gives rise to its prominent physical properties which promises the onset of novel physical phenomena and applications. Here, the in‐plane electronic correlations are explored, and new mid‐infrared plasmon excitations in 1T′ phase monolayer WSe(2) and MoS(2) are observed using optical spectroscopies. Based on an extensive first‐principles study which analyzes the charge dynamics across multiple axes of the atomic‐layered systems, the collective charge excitations are found to disperse only along the direction perpendicular to the chains. Further analysis reveals that the interchain long‐range coupling is responsible for the coherent 1D charge dynamics and the spin–orbit coupling affects the plasmon frequency. Detailed investigation of these charge collective modes in 2D‐chained systems offers opportunities for novel device applications and has implications for the underlying mechanism that governs superconductivity in 2D TMD systems.
format Online
Article
Text
id pubmed-7237846
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-72378462020-05-21 Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides Tang, Chi Sin Yin, Xinmao Yang, Ming Wu, Di Wu, Jing Wong, Lai Mun Li, Changjian Tong, Shi Wun Chang, Yung‐Huang Ouyang, Fangping Feng, Yuan Ping Wang, Shi Jie Chi, Dongzhi Breese, Mark B. H. Zhang, Wenjing Rusydi, Andrivo Wee, Andrew T. S. Adv Sci (Weinh) Communications The quasimetallic 1T′ phase 2D transition‐metal dichalcogenides (TMDs) consist of 1D zigzag metal chains stacked periodically along a single axis. This gives rise to its prominent physical properties which promises the onset of novel physical phenomena and applications. Here, the in‐plane electronic correlations are explored, and new mid‐infrared plasmon excitations in 1T′ phase monolayer WSe(2) and MoS(2) are observed using optical spectroscopies. Based on an extensive first‐principles study which analyzes the charge dynamics across multiple axes of the atomic‐layered systems, the collective charge excitations are found to disperse only along the direction perpendicular to the chains. Further analysis reveals that the interchain long‐range coupling is responsible for the coherent 1D charge dynamics and the spin–orbit coupling affects the plasmon frequency. Detailed investigation of these charge collective modes in 2D‐chained systems offers opportunities for novel device applications and has implications for the underlying mechanism that governs superconductivity in 2D TMD systems. John Wiley and Sons Inc. 2020-04-16 /pmc/articles/PMC7237846/ /pubmed/32440469 http://dx.doi.org/10.1002/advs.201902726 Text en © 2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Tang, Chi Sin
Yin, Xinmao
Yang, Ming
Wu, Di
Wu, Jing
Wong, Lai Mun
Li, Changjian
Tong, Shi Wun
Chang, Yung‐Huang
Ouyang, Fangping
Feng, Yuan Ping
Wang, Shi Jie
Chi, Dongzhi
Breese, Mark B. H.
Zhang, Wenjing
Rusydi, Andrivo
Wee, Andrew T. S.
Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides
title Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides
title_full Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides
title_fullStr Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides
title_full_unstemmed Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides
title_short Anisotropic Collective Charge Excitations in Quasimetallic 2D Transition‐Metal Dichalcogenides
title_sort anisotropic collective charge excitations in quasimetallic 2d transition‐metal dichalcogenides
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237846/
https://www.ncbi.nlm.nih.gov/pubmed/32440469
http://dx.doi.org/10.1002/advs.201902726
work_keys_str_mv AT tangchisin anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT yinxinmao anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT yangming anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT wudi anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT wujing anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT wonglaimun anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT lichangjian anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT tongshiwun anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT changyunghuang anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT ouyangfangping anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT fengyuanping anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT wangshijie anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT chidongzhi anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT breesemarkbh anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT zhangwenjing anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT rusydiandrivo anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides
AT weeandrewts anisotropiccollectivechargeexcitationsinquasimetallic2dtransitionmetaldichalcogenides