Cargando…
Predicting Illness Severity and Short-Term Outcomes of COVID-19: A Retrospective Cohort Study in China
Among 417 COVID-19 patients in Shenzhen, demographic characteristics, clinical manifestations and baseline laboratory tests showed significant differences between mild-moderate cohort and severe-critical cohort.Based on these differences, a convenient mathematical model was established to predict th...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237911/ https://www.ncbi.nlm.nih.gov/pubmed/33554186 http://dx.doi.org/10.1016/j.xinn.2020.04.007 |
Sumario: | Among 417 COVID-19 patients in Shenzhen, demographic characteristics, clinical manifestations and baseline laboratory tests showed significant differences between mild-moderate cohort and severe-critical cohort.Based on these differences, a convenient mathematical model was established to predict the illness severity of COVID-19. The model includes four parameters: age, BMI, CD4(+) lymphocytes and IL-6 levels. The AUC of the model is 0.911.The high risk factors for developing to severe COVID-19 are: age ≥ 55 years, BMI > 27 kg / m(2), IL-6 ≥ 20 pg / ml, CD4(+) T cell ≤ 400 count / μ L.Among 249 discharged COVID-19 patients, those who recovered after 20 days had a lower count of platelet, a higher level of estimated glomerular filtration rate, and higher level of interleukin-6 and myoglobin than those who recovered within 20 days. |
---|