Cargando…
Privacy-Preserving Deep Learning for the Detection of Protected Health Information in Real-World Data: Comparative Evaluation
BACKGROUND: Collaborative privacy-preserving training methods allow for the integration of locally stored private data sets into machine learning approaches while ensuring confidentiality and nondisclosure. OBJECTIVE: In this work we assess the performance of a state-of-the-art neural network approa...
Autores principales: | Festag, Sven, Spreckelsen, Cord |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238077/ https://www.ncbi.nlm.nih.gov/pubmed/32369025 http://dx.doi.org/10.2196/14064 |
Ejemplares similares
-
Privacy-Preserving Record Grouping and Consent Management Based on a Public-Private Key Signature Scheme: Theoretical Analysis and Feasibility Study
por: Jonas, Stephan, et al.
Publicado: (2019) -
Using machine learning to estimate the calendar age based on autonomic cardiovascular function
por: Schumann, Andy, et al.
Publicado: (2023) -
Implementing privacy-preserving record linkage: welcome to the real world
por: Boyd, James, et al.
Publicado: (2017) -
Editorial: Privacy-Preserving Deep Heterogeneous View Perception for Data Learning
por: Li, Peng
Publicado: (2022) -
An investigation of privacy preservation in deep learning-based eye-tracking
por: Seyedi, Salman, et al.
Publicado: (2022)