Cargando…
Deep Learning–Based Prediction of Refractive Error Using Photorefraction Images Captured by a Smartphone: Model Development and Validation Study
BACKGROUND: Accurately predicting refractive error in children is crucial for detecting amblyopia, which can lead to permanent visual impairment, but is potentially curable if detected early. Various tools have been adopted to more easily screen a large number of patients for amblyopia risk. OBJECTI...
Autores principales: | Chun, Jaehyeong, Kim, Youngjun, Shin, Kyoung Yoon, Han, Sun Hyup, Oh, Sei Yeul, Chung, Tae-Young, Park, Kyung-Ah, Lim, Dong Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238094/ https://www.ncbi.nlm.nih.gov/pubmed/32369035 http://dx.doi.org/10.2196/16225 |
Ejemplares similares
-
Deep learning for predicting refractive error from multiple photorefraction images
por: Xu, Daoliang, et al.
Publicado: (2022) -
Early Detection of Refractive Errors by Photorefraction at School Age
por: Alvarez, Marta, et al.
Publicado: (2022) -
Long-Term Changes in Refractive Error and Clinical Evaluation in Partially Accommodative Esotropia after Surgery
por: Oh, Shin Yeop, et al.
Publicado: (2016) -
Calculation of the Real Corneal Refractive Power after Photorefractive Keratectomy Using Pentacam, When Only the Preoperative Refractive Error is Known
por: De Bernardo, Maddalena, et al.
Publicado: (2020) -
Photorefractive keratectomy for correcting residual refractive error following cataract surgery with premium intraocular lens implantation
por: Fan, Yuan-Yao, et al.
Publicado: (2018)