Cargando…

Comparative Lipidomic Analysis Reveals Heat Stress Responses of Two Soybean Genotypes Differing in Temperature Sensitivity

Heat-induced changes in lipidome and their influence on stress adaptation are not well-defined in plants. We investigated if lipid metabolic changes contribute to differences in heat stress responses in a heat-tolerant soybean genotype DS25-1 and a heat-susceptible soybean genotype DT97-4290. Both g...

Descripción completa

Detalles Bibliográficos
Autores principales: Narayanan, Sruthi, Zoong-Lwe, Zolian S., Gandhi, Nitant, Welti, Ruth, Fallen, Benjamin, Smith, James R., Rustgi, Sachin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238245/
https://www.ncbi.nlm.nih.gov/pubmed/32260392
http://dx.doi.org/10.3390/plants9040457
Descripción
Sumario:Heat-induced changes in lipidome and their influence on stress adaptation are not well-defined in plants. We investigated if lipid metabolic changes contribute to differences in heat stress responses in a heat-tolerant soybean genotype DS25-1 and a heat-susceptible soybean genotype DT97-4290. Both genotypes were grown at optimal temperatures (OT; 30/20 °C) for 15 days. Subsequently, half of the plants were exposed to heat stress (38/28 °C) for 11 days, and the rest were kept at OT. Leaf samples were collected for lipid and RNA extractions on the 9(th) and 11(th) days of stress, respectively. We observed a decline in the lipid unsaturation level due to a decrease in the polyunsaturated linolenic acid (18:3) content in DS25-1. When examined under OT conditions, DS25-1 and DT97-4290 showed no significant differences in the expression pattern of the Fatty Acid Desaturase (FAD) 2-1A, FAD2-2B, FAD2-2C, FAD3A genes. Under heat stress conditions, substantial reductions in the expression levels of the FAD3A and FAD3B genes, which convert 18:2 lipids to 18:3, were observed in DS25-1. Our results suggest that decrease in levels of lipids containing 18:3 acyl chains under heat stress in DS25-1 is a likely consequence of reduced FAD3A and FAD3B expression, and the decrease in 18:3 contributes to DS25-1′s maintenance of membrane functionality and heat tolerance.