Cargando…
Topical Delivery of Coenzyme Q10-Loaded Microemulsion for Skin Regeneration
The aim of this study was to develop a coenzyme Q10 (CoQ10) microemulsion system with improved solubility, penetration, and wound healing efficacy. Based on the pseudo-ternary diagram, microemulsions containing isopropyl myristate (IPM), Cremophor EL(®), and Transcutol(®) HP were selected and confir...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238272/ https://www.ncbi.nlm.nih.gov/pubmed/32272811 http://dx.doi.org/10.3390/pharmaceutics12040332 |
Sumario: | The aim of this study was to develop a coenzyme Q10 (CoQ10) microemulsion system with improved solubility, penetration, and wound healing efficacy. Based on the pseudo-ternary diagram, microemulsions containing isopropyl myristate (IPM), Cremophor EL(®), and Transcutol(®) HP were selected and confirmed to be nanosized (<20 nm) and thermodynamically stable based on the dilution and thermodynamic stability tests. The CoQ10-loaded microemulsion with a surfactant/co-surfactant (S/CoS) ratio of 2:1 (w/w %) demonstrated a higher permeation efficacy compared to microemulsions with S/CoS ratio of 3:1 or 4:1 (w/w %). Additionally, the CoQ10-loaded microemulsion with an S/CoS ratio of 2:1 demonstrated a relatively rapid wound healing effect in keratinocytes and fibroblasts. Overall, these data suggest that a microemulsion based on IPM, Cremophor EL(®), and Transcutol(®) HP could be an effective vehicle for the topical administration of CoQ10 and could be utilized for the application of other therapeutic agents that have difficulty in penetrating the skin. |
---|