Cargando…
Identification and Validation of Prognostically Relevant Gene Signature in Melanoma
BACKGROUND: Currently, effective genetic markers are limited to predict the clinical outcome of melanoma. High-throughput multiomics sequencing data have provided a valuable approach for the identification of genes associated with cancer prognosis. METHOD: The multidimensional data of melanoma patie...
Autores principales: | Gao, Yali, Li, Yaling, Niu, Xueli, Wu, Yutong, Guan, Xiuhao, Hong, Yuxiao, Chen, Hongduo, Song, Bing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238332/ https://www.ncbi.nlm.nih.gov/pubmed/32462000 http://dx.doi.org/10.1155/2020/5323614 |
Ejemplares similares
-
Machine-learning based prediction of prognostic risk factors in patients with invasive candidiasis infection and bacterial bloodstream infection: a singled centered retrospective study
por: Li, Yaling, et al.
Publicado: (2022) -
A 5-Year Review of Invasive Fungal Infection at an Academic Medical Center
por: Li, Yaling, et al.
Publicado: (2020) -
Prediction of Prognostic Risk Factors in Patients with Invasive Candidiasis and Cancer: A Single-Centre Retrospective Study
por: Li, Jingyi, et al.
Publicado: (2022) -
Machine-learning based prediction and analysis of prognostic risk factors in patients with candidemia and bacteraemia: a 5-year analysis
por: Gao, Yali, et al.
Publicado: (2022) -
LncRNA BASP1‐AS1 interacts with YBX1 to regulate Notch transcription and drives the malignancy of melanoma
por: Li, YaLing, et al.
Publicado: (2021)