Cargando…

Separation of New Coumarin Glycosides from Toddalia asiatica Using Offline Two-Dimensional High-Performance Liquid Chromatography

Coumarins and flavonoids are the major constituents of Toddalia asiatica. The separation and purification of ingredients from T. asiatica is an important procedure to acquire high-purity compounds for subsequent pharmacological investigation to discover leading compounds. In the present work, an off...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yan, Sun, Shi-Wei, Zhang, Xiao-Yi, Liu, Yang, Liu, Xiao-Hong, Zhang, Shuang, Wang, Wei, Wang, Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238425/
https://www.ncbi.nlm.nih.gov/pubmed/32244561
http://dx.doi.org/10.3390/plants9040428
Descripción
Sumario:Coumarins and flavonoids are the major constituents of Toddalia asiatica. The separation and purification of ingredients from T. asiatica is an important procedure to acquire high-purity compounds for subsequent pharmacological investigation to discover leading compounds. In the present work, an offline two-dimensional high-performance liquid chromatography (HPLC) method was successfully established for the separation of high-purity glycosides from T. asiatica. Based on the separation results obtained with two different chromatographic stationary phases, a phenyl-bonded silica-based reversed-phase column was employed as the first HPLC preparation, and three fractions were obtained from the sample. Then, the fractions were isolated and purified on an octadecyl-bonded silica-based reversed-phase column to obtain high-purity compounds in the second HPLC separation. As a result, three coumarin glycosides, including two undescribed and one known, along with one known flavonoid glycoside with more than 98% purity were isolated from the sample. The structures of the isolated compounds were elucidated on the basis of extensive spectroscopic evidence derived from optical rotation, mass spectrometry, and nuclear magnetic resonance experiments. Two-dimensional HPLC with different stationary phases has the potential to be an efficient method for the separation of high-purity compounds from T. asiatica.