Cargando…

Patient-derived xenografts as compatible models for precision oncology

Cancer is a very heterogeneous disease, displaying heterogeneity between patients (inter-tumoral heterogeneity) and heterogeneity within a patient (intra-tumoral heterogeneity). Precision oncology is a diagnostic and therapeutic approach for cancers based on the stratification of patients using geno...

Descripción completa

Detalles Bibliográficos
Autor principal: Cho, Sung-Yup
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238616/
https://www.ncbi.nlm.nih.gov/pubmed/32461927
http://dx.doi.org/10.1186/s42826-020-00045-1
Descripción
Sumario:Cancer is a very heterogeneous disease, displaying heterogeneity between patients (inter-tumoral heterogeneity) and heterogeneity within a patient (intra-tumoral heterogeneity). Precision oncology is a diagnostic and therapeutic approach for cancers based on the stratification of patients using genomic and molecular profiling of tumors. To develop diagnostic and therapeutic tools for the application of precision oncology, appropriate preclinical mouse models that reflect tumor heterogeneity are required. Patient-derived xenograft (PDX) models are generated by the engraftment of patient tumors into immunodeficient mice that retain several aspects of the patient’s tumor characteristics, including inter-tumoral heterogeneity and intra-tumoral heterogeneity. Therefore, PDX models can be applied in various developmental steps of cancer diagnostics and therapeutics, such as biomarker development, companion diagnostics, drug efficacy testing, overcoming drug resistance, and co-clinical trials. This review summarizes the diverse aspects of PDX models, addressing the factors considered for PDX generation, application of PDX models for cancer research, and future directions of PDX models.