Cargando…
Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach
SARS-CoV-2 T cell response assessment and vaccine development may benefit from an approach that considers the global landscape of the human leukocyte antigen (HLA) proteins. We predicted the binding affinity between 9-mer and 15-mer peptides from the SARS-CoV-2 peptidome for 9,360 class I and 8,445...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239055/ https://www.ncbi.nlm.nih.gov/pubmed/32511325 http://dx.doi.org/10.1101/2020.03.30.016931 |
_version_ | 1783536641725431808 |
---|---|
author | Campbell, Katie M. Steiner, Gabriela Wells, Daniel K. Ribas, Antoni Kalbasi, Anusha |
author_facet | Campbell, Katie M. Steiner, Gabriela Wells, Daniel K. Ribas, Antoni Kalbasi, Anusha |
author_sort | Campbell, Katie M. |
collection | PubMed |
description | SARS-CoV-2 T cell response assessment and vaccine development may benefit from an approach that considers the global landscape of the human leukocyte antigen (HLA) proteins. We predicted the binding affinity between 9-mer and 15-mer peptides from the SARS-CoV-2 peptidome for 9,360 class I and 8,445 class II HLA alleles, respectively. We identified 368,145 unique combinations of peptide-HLA complexes (pMHCs) with a predicted binding affinity less than 500nM, and observed significant overlap between class I and II predicted pMHCs. Using simulated populations derived from worldwide HLA frequency data, we identified sets of epitopes predicted in at least 90% of the population in 57 countries. We also developed a method to prioritize pMHCs for specific populations. Collectively, this public dataset and accessible user interface (Shiny app: https://rstudio-connect.parkerici.org/content/13/) can be used to explore the SARS-CoV-2 epitope landscape in the context of diverse HLA types across global populations. |
format | Online Article Text |
id | pubmed-7239055 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-72390552020-06-07 Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach Campbell, Katie M. Steiner, Gabriela Wells, Daniel K. Ribas, Antoni Kalbasi, Anusha bioRxiv Article SARS-CoV-2 T cell response assessment and vaccine development may benefit from an approach that considers the global landscape of the human leukocyte antigen (HLA) proteins. We predicted the binding affinity between 9-mer and 15-mer peptides from the SARS-CoV-2 peptidome for 9,360 class I and 8,445 class II HLA alleles, respectively. We identified 368,145 unique combinations of peptide-HLA complexes (pMHCs) with a predicted binding affinity less than 500nM, and observed significant overlap between class I and II predicted pMHCs. Using simulated populations derived from worldwide HLA frequency data, we identified sets of epitopes predicted in at least 90% of the population in 57 countries. We also developed a method to prioritize pMHCs for specific populations. Collectively, this public dataset and accessible user interface (Shiny app: https://rstudio-connect.parkerici.org/content/13/) can be used to explore the SARS-CoV-2 epitope landscape in the context of diverse HLA types across global populations. Cold Spring Harbor Laboratory 2020-06-29 /pmc/articles/PMC7239055/ /pubmed/32511325 http://dx.doi.org/10.1101/2020.03.30.016931 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/It is made available under a CC-BY-NC-ND 4.0 International license (http://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Article Campbell, Katie M. Steiner, Gabriela Wells, Daniel K. Ribas, Antoni Kalbasi, Anusha Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach |
title | Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach |
title_full | Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach |
title_fullStr | Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach |
title_full_unstemmed | Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach |
title_short | Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach |
title_sort | prioritization of sars-cov-2 epitopes using a pan-hla and global population inference approach |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239055/ https://www.ncbi.nlm.nih.gov/pubmed/32511325 http://dx.doi.org/10.1101/2020.03.30.016931 |
work_keys_str_mv | AT campbellkatiem prioritizationofsarscov2epitopesusingapanhlaandglobalpopulationinferenceapproach AT steinergabriela prioritizationofsarscov2epitopesusingapanhlaandglobalpopulationinferenceapproach AT wellsdanielk prioritizationofsarscov2epitopesusingapanhlaandglobalpopulationinferenceapproach AT ribasantoni prioritizationofsarscov2epitopesusingapanhlaandglobalpopulationinferenceapproach AT kalbasianusha prioritizationofsarscov2epitopesusingapanhlaandglobalpopulationinferenceapproach |