Cargando…

Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach

SARS-CoV-2 T cell response assessment and vaccine development may benefit from an approach that considers the global landscape of the human leukocyte antigen (HLA) proteins. We predicted the binding affinity between 9-mer and 15-mer peptides from the SARS-CoV-2 peptidome for 9,360 class I and 8,445...

Descripción completa

Detalles Bibliográficos
Autores principales: Campbell, Katie M., Steiner, Gabriela, Wells, Daniel K., Ribas, Antoni, Kalbasi, Anusha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239055/
https://www.ncbi.nlm.nih.gov/pubmed/32511325
http://dx.doi.org/10.1101/2020.03.30.016931
_version_ 1783536641725431808
author Campbell, Katie M.
Steiner, Gabriela
Wells, Daniel K.
Ribas, Antoni
Kalbasi, Anusha
author_facet Campbell, Katie M.
Steiner, Gabriela
Wells, Daniel K.
Ribas, Antoni
Kalbasi, Anusha
author_sort Campbell, Katie M.
collection PubMed
description SARS-CoV-2 T cell response assessment and vaccine development may benefit from an approach that considers the global landscape of the human leukocyte antigen (HLA) proteins. We predicted the binding affinity between 9-mer and 15-mer peptides from the SARS-CoV-2 peptidome for 9,360 class I and 8,445 class II HLA alleles, respectively. We identified 368,145 unique combinations of peptide-HLA complexes (pMHCs) with a predicted binding affinity less than 500nM, and observed significant overlap between class I and II predicted pMHCs. Using simulated populations derived from worldwide HLA frequency data, we identified sets of epitopes predicted in at least 90% of the population in 57 countries. We also developed a method to prioritize pMHCs for specific populations. Collectively, this public dataset and accessible user interface (Shiny app: https://rstudio-connect.parkerici.org/content/13/) can be used to explore the SARS-CoV-2 epitope landscape in the context of diverse HLA types across global populations.
format Online
Article
Text
id pubmed-7239055
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-72390552020-06-07 Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach Campbell, Katie M. Steiner, Gabriela Wells, Daniel K. Ribas, Antoni Kalbasi, Anusha bioRxiv Article SARS-CoV-2 T cell response assessment and vaccine development may benefit from an approach that considers the global landscape of the human leukocyte antigen (HLA) proteins. We predicted the binding affinity between 9-mer and 15-mer peptides from the SARS-CoV-2 peptidome for 9,360 class I and 8,445 class II HLA alleles, respectively. We identified 368,145 unique combinations of peptide-HLA complexes (pMHCs) with a predicted binding affinity less than 500nM, and observed significant overlap between class I and II predicted pMHCs. Using simulated populations derived from worldwide HLA frequency data, we identified sets of epitopes predicted in at least 90% of the population in 57 countries. We also developed a method to prioritize pMHCs for specific populations. Collectively, this public dataset and accessible user interface (Shiny app: https://rstudio-connect.parkerici.org/content/13/) can be used to explore the SARS-CoV-2 epitope landscape in the context of diverse HLA types across global populations. Cold Spring Harbor Laboratory 2020-06-29 /pmc/articles/PMC7239055/ /pubmed/32511325 http://dx.doi.org/10.1101/2020.03.30.016931 Text en http://creativecommons.org/licenses/by-nc-nd/4.0/It is made available under a CC-BY-NC-ND 4.0 International license (http://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Article
Campbell, Katie M.
Steiner, Gabriela
Wells, Daniel K.
Ribas, Antoni
Kalbasi, Anusha
Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach
title Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach
title_full Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach
title_fullStr Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach
title_full_unstemmed Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach
title_short Prioritization of SARS-CoV-2 epitopes using a pan-HLA and global population inference approach
title_sort prioritization of sars-cov-2 epitopes using a pan-hla and global population inference approach
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239055/
https://www.ncbi.nlm.nih.gov/pubmed/32511325
http://dx.doi.org/10.1101/2020.03.30.016931
work_keys_str_mv AT campbellkatiem prioritizationofsarscov2epitopesusingapanhlaandglobalpopulationinferenceapproach
AT steinergabriela prioritizationofsarscov2epitopesusingapanhlaandglobalpopulationinferenceapproach
AT wellsdanielk prioritizationofsarscov2epitopesusingapanhlaandglobalpopulationinferenceapproach
AT ribasantoni prioritizationofsarscov2epitopesusingapanhlaandglobalpopulationinferenceapproach
AT kalbasianusha prioritizationofsarscov2epitopesusingapanhlaandglobalpopulationinferenceapproach