Cargando…
Training deep learning algorithms with weakly labeled pneumonia chest X-ray data for COVID-19 detection
The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a pandemic resulting in over 2.7 million infected individuals and over 190,000 deaths and growing. Respiratory disorders in COVID-19 caused by the virus commonly present as viral pneumonia-like opacities in chest X-ray...
Autores principales: | Rajaraman, Sivaramakrishnan, Antani, Sameer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239073/ https://www.ncbi.nlm.nih.gov/pubmed/32511448 http://dx.doi.org/10.1101/2020.05.04.20090803 |
Ejemplares similares
-
Weakly Labeled Data Augmentation for Deep Learning: A Study on COVID-19 Detection in Chest X-Rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2020) -
A Deep Modality-Specific Ensemble for Improving Pneumonia Detection in Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2022) -
Advances in Deep Learning for Tuberculosis Screening using Chest X-rays: The Last 5 Years Review
por: Santosh, KC, et al.
Publicado: (2022) -
Assessing the Impact of Image Resolution on Deep Learning for TB Lesion Segmentation on Frontal Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2023) -
Semantically Redundant Training Data Removal and Deep Model Classification Performance: A Study with Chest X-rays
por: Rajaraman, Sivaramakrishnan, et al.
Publicado: (2023)