Cargando…
Analysis of the active fraction of Iranian Naja naja oxiana snake venom on the metabolite profiles of the malaria parasite by (1)HNMR in vitro
OBJECTIVE(S): Malaria is an important parasitic disease with high morbidity and mortality in tropical areas. Resistance to most antimalarial drugs has encouraged the development of new drugs including natural products. Venom is a complex mixture of active pharmaceutical ingredients. The purpose of t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mashhad University of Medical Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239426/ https://www.ncbi.nlm.nih.gov/pubmed/32489569 http://dx.doi.org/10.22038/IJBMS.2020.39386.9344 |
_version_ | 1783536686390575104 |
---|---|
author | Hajialiani, Fateme Elmi, Taher Mohamadi, Maryam Sadeghi, Sedigheh Shahbazzadeh, Delavar Ghaffarifar, Fatemeh Dalimi, Abdolhossein Arjmand, Mohammad Tabatabaie, Fatemeh Zamani, Zahra |
author_facet | Hajialiani, Fateme Elmi, Taher Mohamadi, Maryam Sadeghi, Sedigheh Shahbazzadeh, Delavar Ghaffarifar, Fatemeh Dalimi, Abdolhossein Arjmand, Mohammad Tabatabaie, Fatemeh Zamani, Zahra |
author_sort | Hajialiani, Fateme |
collection | PubMed |
description | OBJECTIVE(S): Malaria is an important parasitic disease with high morbidity and mortality in tropical areas. Resistance to most antimalarial drugs has encouraged the development of new drugs including natural products. Venom is a complex mixture of active pharmaceutical ingredients. The purpose of this study was to investigate the antimalarial activity of purified fractions of Naja naja oxiana. MATERIALS AND METHODS: Lyophilized venom was purified with a Sephacryl S-200 HR column and the fractions lyophilized and inhibitory concentration 50% against Plasmodium falciparum 3D7 in vitro obtained. The 4(th) fraction was run on a Mono Q column, and activity against P. falciparum was detected by lactate dehydrogenase assay and purity by SDS PAGE. Large scale culture of the parasite was carried out with and without the active fraction on the ring stage for 48 hr. The parasites were collected and lyophilized and analyzed by 1HNMR. Chemometrics studies were performed using MATLAB, differentiating metabolites were identified by Human Metabolic Database, and metabolic pathways by the Metaboanalyst online package. RESULTS: The active fraction from the ion exchange column had a 50% inhibitory concentration of 0.026 µg/ml on P. falciparum in vitro (P<0.001) with molecular weight of 63 kDa by SDS-PAGE and no hemolytic activity. Metabolomics studies on the two groups with and without the fraction identified 5 differentiating metabolites and a number of related pathways. CONCLUSION: The metabolites were succinic acid, l-glutamic acid, pyruvic acid, cholesterol, and NAD. The changes in the Krebs cycle and metabolism pathways of nicotinamide and pyruvate were noticeable. |
format | Online Article Text |
id | pubmed-7239426 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Mashhad University of Medical Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-72394262020-06-01 Analysis of the active fraction of Iranian Naja naja oxiana snake venom on the metabolite profiles of the malaria parasite by (1)HNMR in vitro Hajialiani, Fateme Elmi, Taher Mohamadi, Maryam Sadeghi, Sedigheh Shahbazzadeh, Delavar Ghaffarifar, Fatemeh Dalimi, Abdolhossein Arjmand, Mohammad Tabatabaie, Fatemeh Zamani, Zahra Iran J Basic Med Sci Original Article OBJECTIVE(S): Malaria is an important parasitic disease with high morbidity and mortality in tropical areas. Resistance to most antimalarial drugs has encouraged the development of new drugs including natural products. Venom is a complex mixture of active pharmaceutical ingredients. The purpose of this study was to investigate the antimalarial activity of purified fractions of Naja naja oxiana. MATERIALS AND METHODS: Lyophilized venom was purified with a Sephacryl S-200 HR column and the fractions lyophilized and inhibitory concentration 50% against Plasmodium falciparum 3D7 in vitro obtained. The 4(th) fraction was run on a Mono Q column, and activity against P. falciparum was detected by lactate dehydrogenase assay and purity by SDS PAGE. Large scale culture of the parasite was carried out with and without the active fraction on the ring stage for 48 hr. The parasites were collected and lyophilized and analyzed by 1HNMR. Chemometrics studies were performed using MATLAB, differentiating metabolites were identified by Human Metabolic Database, and metabolic pathways by the Metaboanalyst online package. RESULTS: The active fraction from the ion exchange column had a 50% inhibitory concentration of 0.026 µg/ml on P. falciparum in vitro (P<0.001) with molecular weight of 63 kDa by SDS-PAGE and no hemolytic activity. Metabolomics studies on the two groups with and without the fraction identified 5 differentiating metabolites and a number of related pathways. CONCLUSION: The metabolites were succinic acid, l-glutamic acid, pyruvic acid, cholesterol, and NAD. The changes in the Krebs cycle and metabolism pathways of nicotinamide and pyruvate were noticeable. Mashhad University of Medical Sciences 2020-04 /pmc/articles/PMC7239426/ /pubmed/32489569 http://dx.doi.org/10.22038/IJBMS.2020.39386.9344 Text en This is an Open Access article distributed under the terms of the Creative Commons Attribution License, (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Hajialiani, Fateme Elmi, Taher Mohamadi, Maryam Sadeghi, Sedigheh Shahbazzadeh, Delavar Ghaffarifar, Fatemeh Dalimi, Abdolhossein Arjmand, Mohammad Tabatabaie, Fatemeh Zamani, Zahra Analysis of the active fraction of Iranian Naja naja oxiana snake venom on the metabolite profiles of the malaria parasite by (1)HNMR in vitro |
title | Analysis of the active fraction of Iranian Naja naja oxiana snake venom on the metabolite profiles of the malaria parasite by (1)HNMR in vitro |
title_full | Analysis of the active fraction of Iranian Naja naja oxiana snake venom on the metabolite profiles of the malaria parasite by (1)HNMR in vitro |
title_fullStr | Analysis of the active fraction of Iranian Naja naja oxiana snake venom on the metabolite profiles of the malaria parasite by (1)HNMR in vitro |
title_full_unstemmed | Analysis of the active fraction of Iranian Naja naja oxiana snake venom on the metabolite profiles of the malaria parasite by (1)HNMR in vitro |
title_short | Analysis of the active fraction of Iranian Naja naja oxiana snake venom on the metabolite profiles of the malaria parasite by (1)HNMR in vitro |
title_sort | analysis of the active fraction of iranian naja naja oxiana snake venom on the metabolite profiles of the malaria parasite by (1)hnmr in vitro |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239426/ https://www.ncbi.nlm.nih.gov/pubmed/32489569 http://dx.doi.org/10.22038/IJBMS.2020.39386.9344 |
work_keys_str_mv | AT hajialianifateme analysisoftheactivefractionofiraniannajanajaoxianasnakevenomonthemetaboliteprofilesofthemalariaparasiteby1hnmrinvitro AT elmitaher analysisoftheactivefractionofiraniannajanajaoxianasnakevenomonthemetaboliteprofilesofthemalariaparasiteby1hnmrinvitro AT mohamadimaryam analysisoftheactivefractionofiraniannajanajaoxianasnakevenomonthemetaboliteprofilesofthemalariaparasiteby1hnmrinvitro AT sadeghisedigheh analysisoftheactivefractionofiraniannajanajaoxianasnakevenomonthemetaboliteprofilesofthemalariaparasiteby1hnmrinvitro AT shahbazzadehdelavar analysisoftheactivefractionofiraniannajanajaoxianasnakevenomonthemetaboliteprofilesofthemalariaparasiteby1hnmrinvitro AT ghaffarifarfatemeh analysisoftheactivefractionofiraniannajanajaoxianasnakevenomonthemetaboliteprofilesofthemalariaparasiteby1hnmrinvitro AT dalimiabdolhossein analysisoftheactivefractionofiraniannajanajaoxianasnakevenomonthemetaboliteprofilesofthemalariaparasiteby1hnmrinvitro AT arjmandmohammad analysisoftheactivefractionofiraniannajanajaoxianasnakevenomonthemetaboliteprofilesofthemalariaparasiteby1hnmrinvitro AT tabatabaiefatemeh analysisoftheactivefractionofiraniannajanajaoxianasnakevenomonthemetaboliteprofilesofthemalariaparasiteby1hnmrinvitro AT zamanizahra analysisoftheactivefractionofiraniannajanajaoxianasnakevenomonthemetaboliteprofilesofthemalariaparasiteby1hnmrinvitro |