Cargando…
Identification of functional cis-acting RNA elements in the hepatitis E virus genome required for viral replication
There are approximately 20 million events of hepatitis E virus (HEV) infection worldwide annually. The genome of HEV is a single-strand, positive-sense RNA containing 5’ and 3’ untranslated regions and three open reading frames (ORF). HEV genome has 5’ cap and 3’ poly(A) tail to mimic host mRNA to e...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239442/ https://www.ncbi.nlm.nih.gov/pubmed/32433693 http://dx.doi.org/10.1371/journal.ppat.1008488 |
_version_ | 1783536690180128768 |
---|---|
author | Ju, Xiaohui Xiang, Guangtao Gong, Mingli Yang, Rui Qin, Jierui Li, Yafei Nan, Yuchen Yang, Yonglin Zhang, Qiangfeng Cliff Ding, Qiang |
author_facet | Ju, Xiaohui Xiang, Guangtao Gong, Mingli Yang, Rui Qin, Jierui Li, Yafei Nan, Yuchen Yang, Yonglin Zhang, Qiangfeng Cliff Ding, Qiang |
author_sort | Ju, Xiaohui |
collection | PubMed |
description | There are approximately 20 million events of hepatitis E virus (HEV) infection worldwide annually. The genome of HEV is a single-strand, positive-sense RNA containing 5’ and 3’ untranslated regions and three open reading frames (ORF). HEV genome has 5’ cap and 3’ poly(A) tail to mimic host mRNA to escape the host innate immune surveillance and utilize host translational machineries for viral protein translation. The replication mechanism of HEV is poorly understood, especially how the viral polymerase distinguishes viral RNA from host mRNA to synthesize new viral genomes. We hypothesize that the HEV genome contains cis-acting elements that can be recognized by the virally encoded polymerase as “self” for replication. To identify functional cis-acting elements systematically across the HEV genome, we utilized an ORF1 transcomplementation system. Ultimately, we found two highly conserved cis-acting RNA elements within the ORF1 and ORF2 coding regions that are required for viral genome replication in a diverse panel of HEV genotypes. Synonymous mutations in the cis-acting RNA elements, not altering the ORF1 and ORF2 protein sequences, significantly impaired production of infectious viral particles. Mechanistic studies revealed that the cis-acting elements form secondary structures needed to interact with the HEV ORF1 protein to promote HEV replication. Thus, these cis-acting elements function as a scaffold, providing a specific “signal” that recruits viral and host factors to assemble the viral replication complex. Altogether, this work not only facilitates our understanding of the HEV life cycle and provides novel, RNA-directed targets for potential HEV treatments, but also sheds light on the development of HEV as a therapeutic delivery vector. |
format | Online Article Text |
id | pubmed-7239442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-72394422020-06-08 Identification of functional cis-acting RNA elements in the hepatitis E virus genome required for viral replication Ju, Xiaohui Xiang, Guangtao Gong, Mingli Yang, Rui Qin, Jierui Li, Yafei Nan, Yuchen Yang, Yonglin Zhang, Qiangfeng Cliff Ding, Qiang PLoS Pathog Research Article There are approximately 20 million events of hepatitis E virus (HEV) infection worldwide annually. The genome of HEV is a single-strand, positive-sense RNA containing 5’ and 3’ untranslated regions and three open reading frames (ORF). HEV genome has 5’ cap and 3’ poly(A) tail to mimic host mRNA to escape the host innate immune surveillance and utilize host translational machineries for viral protein translation. The replication mechanism of HEV is poorly understood, especially how the viral polymerase distinguishes viral RNA from host mRNA to synthesize new viral genomes. We hypothesize that the HEV genome contains cis-acting elements that can be recognized by the virally encoded polymerase as “self” for replication. To identify functional cis-acting elements systematically across the HEV genome, we utilized an ORF1 transcomplementation system. Ultimately, we found two highly conserved cis-acting RNA elements within the ORF1 and ORF2 coding regions that are required for viral genome replication in a diverse panel of HEV genotypes. Synonymous mutations in the cis-acting RNA elements, not altering the ORF1 and ORF2 protein sequences, significantly impaired production of infectious viral particles. Mechanistic studies revealed that the cis-acting elements form secondary structures needed to interact with the HEV ORF1 protein to promote HEV replication. Thus, these cis-acting elements function as a scaffold, providing a specific “signal” that recruits viral and host factors to assemble the viral replication complex. Altogether, this work not only facilitates our understanding of the HEV life cycle and provides novel, RNA-directed targets for potential HEV treatments, but also sheds light on the development of HEV as a therapeutic delivery vector. Public Library of Science 2020-05-20 /pmc/articles/PMC7239442/ /pubmed/32433693 http://dx.doi.org/10.1371/journal.ppat.1008488 Text en © 2020 Ju et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ju, Xiaohui Xiang, Guangtao Gong, Mingli Yang, Rui Qin, Jierui Li, Yafei Nan, Yuchen Yang, Yonglin Zhang, Qiangfeng Cliff Ding, Qiang Identification of functional cis-acting RNA elements in the hepatitis E virus genome required for viral replication |
title | Identification of functional cis-acting RNA elements in the hepatitis E virus genome required for viral replication |
title_full | Identification of functional cis-acting RNA elements in the hepatitis E virus genome required for viral replication |
title_fullStr | Identification of functional cis-acting RNA elements in the hepatitis E virus genome required for viral replication |
title_full_unstemmed | Identification of functional cis-acting RNA elements in the hepatitis E virus genome required for viral replication |
title_short | Identification of functional cis-acting RNA elements in the hepatitis E virus genome required for viral replication |
title_sort | identification of functional cis-acting rna elements in the hepatitis e virus genome required for viral replication |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239442/ https://www.ncbi.nlm.nih.gov/pubmed/32433693 http://dx.doi.org/10.1371/journal.ppat.1008488 |
work_keys_str_mv | AT juxiaohui identificationoffunctionalcisactingrnaelementsinthehepatitisevirusgenomerequiredforviralreplication AT xiangguangtao identificationoffunctionalcisactingrnaelementsinthehepatitisevirusgenomerequiredforviralreplication AT gongmingli identificationoffunctionalcisactingrnaelementsinthehepatitisevirusgenomerequiredforviralreplication AT yangrui identificationoffunctionalcisactingrnaelementsinthehepatitisevirusgenomerequiredforviralreplication AT qinjierui identificationoffunctionalcisactingrnaelementsinthehepatitisevirusgenomerequiredforviralreplication AT liyafei identificationoffunctionalcisactingrnaelementsinthehepatitisevirusgenomerequiredforviralreplication AT nanyuchen identificationoffunctionalcisactingrnaelementsinthehepatitisevirusgenomerequiredforviralreplication AT yangyonglin identificationoffunctionalcisactingrnaelementsinthehepatitisevirusgenomerequiredforviralreplication AT zhangqiangfengcliff identificationoffunctionalcisactingrnaelementsinthehepatitisevirusgenomerequiredforviralreplication AT dingqiang identificationoffunctionalcisactingrnaelementsinthehepatitisevirusgenomerequiredforviralreplication |